Mathematics - 101

Semester - I

December - 2011

[Time : 3 Hours]

[Max. Marks 70]

- Instrucitons: (1) Figure to the right side indicate full marks of question.
 - (2) Symbols are usual.
- 1. (a) State and prove Leibnitz Theorem.

[7]

OR

Let $\sum_{i=1}^{\infty} a_i$ be infinite series of positive terms and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$ then. P. T.

- (1) If l < 1 then $\sum_{i=1}^{\infty} a_i$ is convergent.
- (2) If l > 1 then $\sum a_i$ is divergent.
- (b) If $y = \cos (ax + b)$; (a, b const.) then prove [7] that $y_n = a^n \cos \left(ax + b \frac{n\pi}{2}\right)$; $n \in \mathbb{N}$.

OR

Discuss the convergence of the following series:

(1)
$$\Sigma \frac{4'' \pm 5''}{20''}$$
 (2) $\frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \dots$

2. (a) State and prove Rolle's Theorem

[7]

OR

State L' Hospital's rule and find

$$\lim_{x \to \frac{\pi}{2}} (\sin x) \tan^2 x$$

(b) State Taylor's expansion theorem and expand \sqrt{x} in powers of (x-4).

OR

State and prove L' Hospital's second rule.

3. (a) Define Hermitian and skew – Hermitian [7] matrix.

Express matrix A =
$$\begin{bmatrix} 2+i & -1-i & 3 \\ 1+i & 5 & 4-3i \\ -2i & 1+3i & -2-7i \end{bmatrix}$$

as a sum of Hermitian and skew Hermitian matrix.

OR

Define transpose of a matrix. Prove that $(AB)^T = B^TA^T$ for matrix A of order $m \times n$ and matrix B of order $n \times p$.

(b) Verify A (adj A) = (adj A) . A = |A| . I₃ [7] For A = $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 4 & 3 \\ 3 & 3 & 4 \end{bmatrix}$. Also find A⁻¹.

OR

Find the rank of a matrix

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 0 & -1 \\ 1 & -1 & 2 & 2 \\ 0 & 1 & -3 & -1 \end{bmatrix}$$

4. (a) State and prove Cayley's Hamilton Theorem. [7]

OR

Verify Cayley Hamilton theorem for matrix

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}. \text{ Also find } A^{-1}$$

- If λ is an eigen value matrix $A = [a_{ij}]_n$ (b)
- [7]

- then show that,
 - $\frac{1}{1}$ is the eigen value of A^{-1} .
 - (ii) $\frac{|A|}{1}$ is the eigen value of adj A.
 - (iii) λ^3 is the eigen value of A^3 .

Solve 5x + 3y + 7z = 4; 3x + 26y + 2z = 9; 7x + 2y + 11z = 5 using Cramer's rule.

Answer the following in short. 5.

[14]

- Write expansion of $\sin x$ in terms of x. (i)
- If y = log(3x 4) then what is y_n ? (ii)
- Define Convergence of a series.
- Evaluate: $\lim_{x\to\infty} \frac{3^x 2^x}{r}$
- Define row rank and column rank of a (v) matrix.
- (vi) Give a function which is not differentiabel but continuous.
- (vii) For which value of p the series $\sum \frac{1}{n^p}$ is convergent?
- (viii) If $A = \begin{bmatrix} 5 & x \\ 7 & 0 \end{bmatrix}$ then solve : A = A'.
- (ix) Write necessary and sufficient condition for a square matrix possess inverse.

- (x) If $A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$ then what is A^{-1} ?
- (xi) If one eigen Value of A is -2 what will be eigen value of A^2 ?
- (xii) Define Diagonal Matrix.
- (xiii) How many minors does a 3 × 4 matrix have?
- (xiv) What is the rank of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

2.

Gujarat University

Sem - I

December - 2012

Mathematics

Paper - 101

[lime: 3 Hours]
Instructions:

[Max. Marks : 70]

- (1) There are 5 questions.
- (2) Fifth question is objective type.
- (3) All questions are compulsory.
- 1. (a) If $y = e^{ax} \cos(bx + c)$ a, b, $c \in R$, then prove that $y_n = r^n e^{ax} \cos(bx + c + n\theta)$ where $a = r \cos\theta$ $b = r \sin\theta$; $\theta = \tan^{-1}b/a$.

OR

If $y = \log (ax + b)$ where ax + b > 0, $a, b, c \in R$,

then prove that
$$y_n = \frac{(-1)^{n-1} (n-1)! a^n}{(ax + b)^n}$$

(b) State and prove Cauchy's root test for the convergence of the infinite positive series.

OR

Discuss the convergence of the following series:

(1)
$$\sum_{n=1}^{\infty} \frac{2n}{n^3 + 1}$$

(2)
$$\sum \left(1 - \frac{1}{2n}\right)^{n^2}$$

(a) State and prove the Lagrange's mean value theorem.

OR

State and prove L'Hospital's First rule.

178

State the Maclaurin's theorem. Using this obtain cos (b) x in the powers of x.

OR

Find the value:

- (1) $\lim_{x \to \infty} (\sec^2 x) \cot^2 x$
- $(2) \quad \lim_{x \to 1} \left[\frac{1}{\log x} \frac{1}{x 1} \right]$
- 3. Define adjoint of a matrix. For a square matrix of order (a) n. Prove that A -(adj A) = (adj A) A = $|A| I_n$

Define transpose of a matrix. Prove that $(AB)^T = B^TA^T$ for matrix of A of order m x n and matrix B of order n x p.

Express the matrix $A = \begin{bmatrix} 1 & -1 & 3 \\ 4 & 0 & 2 \\ 1 & 1 & 2 \end{bmatrix}$ as a sum of (b)

symmetric and skew-symmetric matrix.

OR

For matrix
$$A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 0 & -2 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & 3 \\ 2 & 2 \\ -1 & 1 \end{bmatrix}$ verify

the result $(AB)^T = B^TA^T$.

(a) Prove that every square matrix is satisfied it's characteristic equation.

OR

If λ is an eigen value of matrix $A = (a_{ij})_n$ then show

(1)
$$\frac{1}{\lambda}$$
 is the eigen value of A⁻¹

(2)
$$\frac{|A|}{\lambda}$$
 is the eigen value of adj A.

(b) Find Eigen value and Eigen vector of the given matrix

$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$

OR

Solve'3x - y + z = 4; x + y - z = 0; 2x - y + z = 3 using Cramer's rule.

5. Answer the following in short:

(1) State the Leibnitz theorem.

(2) If
$$y = \frac{1}{\sec(1-x)}$$
 then what is y_n ?

(3) If
$$y = 2^{3x} + 1$$
 then find y_n

(4) When alternative series is convergent?

(5) For what value of
$$P : \sum \frac{1}{np}$$
 is divergent?

(6) State the second L' Hospital rule.

(7) If
$$A = \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix}$$
 then what is characteristic value?

(8) Find the value of $\lim_{x \to 1} x \xrightarrow{1-x}$

- (9) What do you mean by In-determinate form?
- (10) For a system of linear equation when
 - (i) Solution does not exists?
 - (ii) When it has unique solution?
- (11) State and prove De'Alembert's Ratio test.
- (12) If A is symmetric matrix then what about $A + A^{T}$ and $A A^{T}$?
- (13) Define rank of a matrix.
- (14) With illustrate, define Hermition matrix.

187

Gujarat University

B.Sc. (Sem - I)

December - 2013

CC-3: Mathematics

Paper - 101

[Time: 3 Hours]

[Max. Marks: 70]

Instructions: (1) There are five questions.

- (2) Fifth question is objective.
- 1. (a) If $y = e^{ax} \cdot \sin(bx + c)$ a, b, $c \in R$ then prove that

$$y_n = (a^2 + b^2)^{n/2} .e^{ax} sin \left(bx + c + n tan^{-1} \frac{b}{a}\right).$$

where
$$\tan \theta = \frac{b}{a}$$
.

7

OR

If $y = (ax + b)^m$; $ax + b \in R$ a $\neq 0$ and b is constant then find out y_n for $n \in N$.

(b) State and prove De' Alembert Ratio Test. 7

OR

Discuss the convergence for the following series:

(i)
$$\frac{x}{2.3} + \frac{x^2}{3.4} + \frac{x^3}{4.5} + \dots$$

(ii)
$$1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \frac{x^n}{n^2 + 1} + \dots$$

2. (a) State and prove Cauchy's mean value theorem. 7
OR

State and prove L'Hospital's second rule.

(b) State the Maclaurin's theorem. Using this obtain 'sin x' in the powers of x.

OR

Prove that:

(i)
$$\frac{\lim}{x \to 0} + \left(\frac{1}{x}\right)^{\tan x} = 1; x > 0$$

(ii)
$$\frac{x}{1+x^2} < \tan^{-1} x < x$$
 and hence show that

$$\pi \in \left(\frac{3\sqrt{3}}{4}, 3\sqrt{3}\right).$$

3. (a) Define Skew symmetric Matrix and Skew-Hermitian matrix.

If A and B are symmetric matrices of the same order, then prove that AB-BA is a skew-symmetric matrix. Also prove that AB-BA is a skew - Hermitian, if A and B are Hermitian matrices of the same order. 4

OR

Define Transpose of a matrix and Diagonal matrix. 3

Prove that $(AB)^T = B^TA^T$ for matrix A of order m × n and matrix B of order n × p. 4

(b) Define: Conjugate matrix and conjugate transpose matrix.

For given matrix.

7

$$A = \begin{bmatrix} 1+i & -2i \\ 3-i & 4+i \\ 1 & 3-2i \end{bmatrix}_{3 \times 2} \text{ Prove that } A^* = \overline{\left(A^T\right)}.$$

5.

Find A⁻¹ of matrix A =
$$\begin{bmatrix} 1 & 2 & 5 \\ 0 & -1 & 2 \\ 1 & 3 & 1 \end{bmatrix}_{3 \times 3}$$

- If λ is an eigen value of matrix $A = [a_{ij}]_n$ then show (a) 4. that
 - λ^{-1} is the eigen value of A^{-1} . 7 (i)
 - (ii) $\frac{|A|}{\lambda}$ is the eigen value of adj A.

OR

Find Eigen value and Eigen vectors of the given matrix

$$A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}.$$

Verify Caley - Hamilton theorem for the given matrix (b)

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}.$$

Also using this theorem find A-1.

OR

Solve the following equations by Crammer's rule: x + y + z = 9, 2x + 5y + 7z = 52, 2x + y - z = 0.

7

14 Answer the following questions in short:

- If $y = 5^{2x-1}$, then what is y_n ? (1)
- If $y = (ax + b)^m$, $ax + b \in R$ and $a \ne 0$, b are constants then what is y_n for n = m and n > m? (2)
- For what value of p; $\sum \frac{1}{n^p}$ is convergent and divergent. (3)
- When alternative series is convergent? (4)

- (5) Let function 'f', defined in the interval [a,b]. When you say that it is strictly increasing?
- (6) Show that other forms of Lagrange's mean value theorem.
- (7) What do you mean by Indeterminant form?
- (8) If $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, then which type of matrix AB?
- (9) Let A be a square matrix. Then show that A + A* is Hermitian.
- (10) If A is symmetric matrix then what about $A + A^{T}$ and $A A^{T}$?
- (11) Define: Adjoint Matrix.
- (12) Define: Consistent and Inconsistent system.
- (13) Fill in the blanks: $adj A . A = \dots$
- (14) What is characteristic equation of the matrix A?

Gujarat University

B.Sc. (Sem - I)

December - 2014

MAT - 101: Mathematics

(Calculus and Matrix Algebra)

[Time: 3 Hours]

[Max. Marks : 70]

Instructions: (1) There are five questions.

- (2) Fifth question is objective.
- (3) All questions carry equal marks.
- State and prove Leibnitz's theorem. (06)(A) 1.

OR

State and prove De' Alembert ratio test. (A)

(B) (1) Find
$$\left\{ x \log \left(\frac{x-1}{x+1} \right) \right\}_n$$
 (08)

(2) If
$$y = e^{msin^{-1}} x$$
 then prove that
$$(1-x^2) y_{n+2} - (2n+1)xy_{n+1} = (n^2 + m^2)y_n$$
OR

Discuss the Convergence of the following series:

(1)
$$\Sigma[(n^3+1)^{1/3}-n]$$

$$(2) \quad \sum \frac{n}{n^2+1} x^n$$

State and prove Lagrange mean value theorem. (06) 2. (A) OR

State Maclaurin's theorem. Using this obtain sin x in (A) the powers of x.

- (B) (1) If 3a 4b + 6c 12d = 0, then show that one root of cubic equation $ax^3 + bx^2 + cx + d = 0$ lies between -1 and 0. (08)
 - (2) Verify Cauchy's mean value theorem for the functions $f(x) = \sqrt{x}$ and g(x) = 2x + 1 in the interval [1, 4], If possible, then find 'c'.

Evaluate limit.

$$\lim_{x \to 0} (\sec^2 x)^{\cot^2 x}$$

(2)
$$\lim_{x \to 0} \left[\frac{1}{x^2} - \frac{1}{\cot^2 x} \right]$$

3. (A) For matrix A of order $m \times n$ and matrix B of order $n \times p$, prove that $(AB)^T = B^T A^T$. (06)

OR

(A) For a square matrix A or order n, Prove that A (adjA) = (adjA) A = $|A|I_n$.

(B) (1) Find the rank of matrix
$$A = \begin{bmatrix} 3 & 2 & 0 & 1 \\ 1 & -1 & 2 & 2 \\ 0 & 1 & -3 & -1 \end{bmatrix}$$
 (08)

(2) Express the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 6 & -7 & 8 \end{bmatrix}$ as a sum of symmetric and skew-symmetric matrix.

OR

(1) Find
$$A^{-1}$$
 of a matrix $A = \begin{bmatrix} 2 & 1 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$.

(2) Verify A * A is a Hermitian matrix for a matrix

$$A = \begin{bmatrix} 2+i & 3 & -1 + 3i \\ -5 & i & 4-2i \end{bmatrix} .$$

- 4. (A) State and prove Cayley Hamilton theorem. (06)
 - (A) If λ is an Eigen value of matrix $A = [a_{ij}]_n$ then show that
 - (1) $\frac{1}{\lambda}$ is the Eigen value of A⁻¹.
 - (2) $\frac{|A|}{\lambda}$ is the Eigen value of adj A.
 - (B) (1) Discuss the consistency of the following system (08) of equations. $(2x+2y+z) = 2, \ 2x+4y+3z = 3, \ 3x+6y+5z = 4$

(2) Find the Eigen values and Eigen vectors of

$$matrix A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

OR

(1) Using Cayley - Hamilton theorem find the inverse matrix of a matrix

$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$$

(2) For which values of λ and μ , the following system of equations has (i) no solution (ii) unique solution.

$$x + y + z = 6$$
, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$.

5. Give answer in short.

(14)

- (1) If $y = (3x + 4)^5$ then find y_5 .
- (2) If $y = \frac{1}{cosec(1-2x)}$ then find y_n .
- (3) Discuss the convergence of $\sum \frac{1}{n^{\frac{3}{2}}}$...
- (4) When alternative series is convergent?
- (5) Can we apply Rolle's Theorem for funtion $f(x) = |x|, x \in [-1, 1].$

- (6) Write the expression for $\cos x$ in terms of x.
- (7) Show that the funtion $f(x) = x^3 + 1$, $x \in R$ increasing.
- (8) What do you mean by indeterminant form?
- (9) Define: Lower triangular matrix with illustration.
- (10) If A is skew symmetric, what about $A A^{T}$?
- (11) Write the condition for the existence of inverse of a square matrix.
- (12) Show that $A A^*$ is skew Hermitian for a square matrix A.
- (13) Write the Eigen values of any diagonal matrix.
- (14) Define: Consistent system.

Gujarat University

B.Sc. (Sem. I) Examination January – 2016

CC - 3 - Paper - 101: Mathematics

(Calculus and Matrix Algebra) (Theory)

[Time: 3 Hours] [Max. Marks: 70]

Instructions:

- (1) There are five questions in this question paper.
- (2) Fifth question is short answer type.
- (3) All questions are compulsory.
- (4) Symbols are usual.
- (5) All questions carry 14 marks.
- (6) The right side figure indicate marks of questions.
- 1. (a) If $y = e^{ax} \sin (bx + c)$, then prove that $y_n = r^n e^{ax} \sin (bx + c + n\alpha)$; where $a \neq 0$, $b \neq 0$, $c \in R$; $n \in N$ and $a = r \cos \alpha$; $b = r \sin \alpha$.

OR

State and prove Cauchy's root test for the convergence of the infinite positive series.

- (b) Answer the following questions: 8
 - (1) If $y = x^3 \log x$, then find y_n .
 - (2) If $y = \cos^{-1} x$; $x \in (-1, 1)$, then prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0.$

Discuss the convergence for the following series:

(1)
$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \frac{1}{11.14} + \dots$$

$$(2) \quad \sum \frac{x^n}{n^2 + 1}$$

2. (a) State and prove the Cauchy's mean value theorem.

OR

State and prove L' Pittal's Second Rule.

- (b) Answer the following questions: 8
 - (1) State Taylor's expansion theorem and using this expand $\sin x$ in power of $\left(x \frac{\pi}{2}\right)$.
 - (2) Prove that,

$$\frac{x}{1+x^2} < \tan^{-1}x < x; \text{ where } 0 < x.$$

OR

Answer the following questions:

(1) Verify the Roll's mean value theorem for the function $f(x) = x^2 - 2x + 3$, $x \in [0, 2]$ and find $C \in (0, 2)$.

- (2) Evaluate: $\lim_{x \to 0} \frac{\tan x \sin x}{x^3}.$
- 3. (a) Define Hermitian and Skew-Hermitian matrices. 2

Express matrix A =
$$\begin{bmatrix} 2+i & -1-i & 3\\ 1+i & 5 & 4-3i\\ -2i & 1+3i & -2-7i \end{bmatrix}$$

as a sum of Hermitian and Skew-Hermitian matrices.

OR

For a square matrix A of order n, prove that $A \cdot (adj \ A) = (adj \ A) \cdot A = |A| \ I_n$. 4

Verify $A \cdot (adj \ A) = (adj \ A) \cdot A = |A| \ I_2$ for a matrix $A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$.

- (b) Answer the following questions:
 - (1) Express the matrix $A = \begin{bmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{bmatrix}$ as a sum of symmetric and skew-symmetric matrices.
 - (2) Find the rank of a matrix

$$A = \begin{bmatrix} 4 & 3 & 0 & -2 \\ 3 & 4 & -1 & -3 \\ -7 & -7 & 1 & 5 \end{bmatrix}$$

Answer the following questions:

(1) For matrix
$$A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 0 & -2 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & 3 \\ 2 & 2 \\ -1 & 1 \end{bmatrix}$

verify the result $(AB)^T = B^T A^T$.

(2) Find C⁻¹ of square matrix C =
$$\begin{bmatrix} 2 & 3 & 6 \\ 1 & 2 & -1 \\ -4 & 0 & 7 \end{bmatrix}$$
.

4. (a) Verify Caley-Hamilton theorem for the given

matrix
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
. Also using this

theorem find A^{-1} .

6

OR

If λ ($\lambda \neq 0$) is an Eigen value of an invertible matrix $A = (a_{ij})_n$ then show that

- (1) $\frac{1}{\lambda}$ is the eigen value of A⁻¹.
- (2) $\frac{|A|}{\lambda}$ is the given value of adj A.

14

Find the eigen value and eigen vector (1)corresponding to any one eigen value of

the square matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
.

Find the characteristic equation for matrix (2)

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}.$$
 Also find the matrix

represented by the matrix polynomial $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2$ -2A + I.

OR

Answer the following questions:

- Solve the equations x + y + z = 3, x + 2y +3z = 4, x + 4y + 9z = 6 using Cramer's rule.
- Prove that the equations x 3y + z = -2, (2) 2x + y - z = 6, x + 2y + 2z = 2 are consistent.
- Answer the following questions in short (any seven):
 - (1) If $y = \frac{1}{2x + 4}$ then find the value $y_6(1)$.
 - (2) Find the radius of convergence of the power series $\sum \left(\sqrt[n]{n} - \frac{1}{2} \right)^n x^n$.

(3) Write the expansion of $\log_e (1 + x)$ in terms of x.

(4) Evaluate:
$$\lim_{x \to 0} \frac{3^x - 2^x}{x}$$
.

- (5) Define the transpose matrix with illustration.
- (6) If $A = \begin{bmatrix} 0 & 11 \\ x & 0 \end{bmatrix}$ is skew-symmetric matrix then find the value of x.

(7) Find
$$A^{-1}$$
 for the matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$.

- (8) If one eigen value of a square matrix A is (-3), what will be the eigen value of A² and A³?
- (9) Write the eigen value of matrix $A = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$.