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PREFACE 

This book is intended to serve as a text for the course in analysis that is usually 
taken by advanced undergraduates or by first-year students who study mathe
matics. 

The present edition covers essentially the same topics as the second one, 
with some additions, a few minor omissions, and considerable rearrangement. I 
hope that these changes will make the material more accessible amd more attrac
tive to the students who take such a course. 

Experience has convinced me that it is pedagogically unsound (though 
logically correct) to start off with the construction of the real numbers from the 
rational ones. At the beginning, most students simply fail to appreciate the need 
for doing this. Accordingly, the real number system is introduced as an ordered 
field with the least-upper-bound property, and a few interesting applications of 
this property are quickly made. However, Dedekind's construction is not omit
ted. It is now in an Appendix to Chapter I, where it may be studied and enjoyed 
whenever the time seems ripe. 

The material on functions of several variables is almost completely re
written, with many details filled in, and with more examples and more motiva
tion. The proof of the inverse function theorem-the key item in Chapter 9'-iS 
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simplified by means of the fixed point theorem about contraction mappings. 
Differential forms are discussed in much greater detail. Several applications of 
Stokes' theorem are included. 

As regards other changes, the chapter on the Riemann-Stieltjes integral 
has been trimmed a bit, a short do-it-yourself section on the gamma function 
has been added to Chapter 8, and there is a large number of new exercises, most 
of them with fairly detailed hints. 

I have also included several references to articles appearing in the American 
Mathematical Monthly and in Mathematics Magazine, in the hope that students 
will develop the habit of looking into the journal literature. Most of these 
references were kindly supplied by R. B. Burckel. 

Over the years, many people, students as well as teachers, have sent me 
corrections, criticisms, and other comments concerning the previous editions 
of this book. I have appreciated these, and I take this opportunity to express 
my sincere thanks to all who have written me. 

WALTER RUDIN 



THE REAL AND COMPLEX NUMBER SYSTEMS 

INTRODUCTION 

A satisfactory discussion of the main concepts of analysis (such as convergence, 
continuity, differentiation, and integration) must be based on an accurately 
defined number concept. We shall not, however, enter into any discussion of 
the axioms that govern the arithmetic of the integers, but assume familiarity 
with the rational numbers (i.e., the numbers of the form m/n, where m and n 
are integers and n =fi 0). 

The rational number system is inadequate for many purposes, both as a 
field and as an ordered set. (These terms will be defined in Secs. 1.6 and 1.12.) 
For instance, there is no rational p such that p2 = 2. (We shall prove this 
presently.) This leads to the introduction of so-called ''irrational numbers'' 
which are often written as infinite decimal expansions and are considered to be 
''approximated'' by the corresponding finite decimals. Thus the sequence 

1, 1.4, 1.41, 1.414, 1.4142, ... 

''tends to J2." But unless the irrational number J2 has been clearly defined, 
the question must arise: Just what is it that this sequence ''tends to''? 
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This sort of question can be answered as soon as the so-called ''real 
number system'' is constructed. 

1.1 Example We now show that the equation 

(1) p2 = 2 

is not satisfied by any rational p. If there were such a p, we could write p = m/n 
where m and n are integers that are not both even. Let us assume this is done. 
Then (1) implies 

(2) m2 = 2n2
, 

This shows that m2 is even. Hence m is even (if m were odd, m2 would be odd), 
and so m2 is divisible by 4. It follows that the right side of (2) is divisible by 4, 
so that n2 is even, which implies that n is even. 

The assumption that (1) holds thus leads to the conclusion that both m 
and n are even, contrary to our choice of m and n. Hence (I) is impossible for 
rational p. 

We now examine this situation a little more closely. Let A be the set of 
all positive rationals p such that p2 < 2 and let B consist of all positive rationals 
p such that p2 > 2. We shall show that A contains no largest number and B con
tains no smallest. 

More explicitly, for every pin A we can find a rational q in A such that 
p < q, and for every p in B we can find a rational q in B such that q < p. 

(3) 

Then 

(4) 

To do this, we associate with each rational p > 0 the number 

p2 -2 2p + 2 
q=p- = . 

p+2 p+2 

2 2 - 2(p2 - 2) 
q - - (p + 2)2 . 

If p is in A then p 2 
- 2 < 0, (3) shows that q > p, and (4) shows that 

q2 < 2. Thus q is in A. 
If pis in B then p2 

- 2 > 0, (3) shows that O < q < p, and (4) shows that 
q2 > 2. Thus q is in B. 

1.2 Remark The purpose of the above discussion has been to show that the 
rational number system has certain gaps, in spite of the fact that between any 
two rationals there is another: If r < s then r < (r + s)/2 < s. The real number 
system fills these gaps. This is the principal reason for the fundamental role 
which it plays in analysis. 
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In order to elucidate its structure, as well as that of the complex numbers, 
we start with a brief discussion of the general concepts of ordered set and field. 

Here is some of the standard set-theoretic terminology that will be used 
throughout this book. 

1.3 Definitions If A is any set (whose elements may be numbers or any other 
objects), we write x e A to indicate that xis a member (or an element) of A. 

If xis not a member of A, we write: x,; A. 
The set which contains no element will be called the empty set. If a set has 

at least one element, it is called nonempty. 
If A and B are sets, and if every element of A is an element of B, we say 

that A is a subset of B, and write A c B, or B => A. If, in addition, there is an 
element of B which is not in A, then A is said to be a proper subset of B. Note 
that A c A for every set A. 

If Ac Band B c A, we write A= B. Otherwise A#: B. 
' 

1.4 Definition Throughout Chap. l, the set of all rational numbers will be 
denoted by Q. 

ORDERED SETS 

1.5 Definition Let S be a set. An order on S is a relation, denoted by <, with 
the following two properties: 

(i) If x e S and ye S then one and only one of the statements 

x<y, x=y, y<x 
is true. 

(ii) If x, y, z e S, if x < y and y < z, then .x < z. 

The statement ''x < y'' may be read as ''xis less than y'' or ''xis smaller 
than y'' or ''x precedes y''. 

It is often convenient to write y > x in place of x < y. 
The notation x Sy indicates that x < y or x = y, without specifying which 

of these two is to hold. In other words, x Sy is the negation of x > y. 

1.6 Definition An ordered set is a set Sin which an order is defined. 
For example, Q is an ordered set if r <sis defined to mean thats - r is a 

positive rational number. 

1.7 Definition Suppose S is an ordered set, and E c S. If there exists a 
/J e S such that x S fJ for every x e E, we say that Eis bounded above, and call 
/J an upper bound of E. 

Lower bounds are defined in the same way (with ~ in place of s ). 
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1.8 Definition Suppose S is an ordered set, E c S, and E is bounded above. 
Suppose there exists an ex e S with the following properties: 

(i) ex is an upper bound of E. 
(ii) If y < ex then y is not an upper bound of E. 

Then ex is called the least upper bound of E [that there is at most one such 
ex is clear from (ii)] or the supremum of E, and we write 

ex= sup E. 

The greatest lower bound, or infimum, of a set E which is bounded below 
is defined in the same manner: The statement 

ex= inf E 

means that ex is a lower bound of E and that no {J with {J > cx is a lower bound 
of E. 

1.9 Examples 

(a) Consider the sets A and B of Example 1.1 as subsets of the ordered 
set Q. The set A is bounded above. In fact, the upper bounds of A are 
exactly the members of B. Since B contains no smallest member, A has 
no least upper bound in Q. 

Similarly, B is bounded below: The set of all lower bounds of B 
consists of A and of all re Q with r S 0. Since A has no lasgest member, 
B has no greatest lower bound in Q. 
(b) If cx = sup E exists, then cx may or may not be a member of E. For 
instance, let E1 be the set of all r e Q with r < 0. Let E2 be the set of all 
r e Q with r S 0. Then 

sup E1 = sup E2 = 0, 

and O ¢ E1, 0 e E2 • 

(c) Let E consist of all numbers 1/n, where n = 1, 2, 3, .... Then 
sup E = 1, which is in E, and inf E = 0, which is not in E. 

1.10 Definition An ordered set Sis said to have the least-upper-bound property 
if the following is true: 

If E c S, Eis not empty, and Eis bounded above, then sup E exists in S. 
Example l .9(a) shows that Q does not have the least-upper-bound property. 
We shall now show that there is a close relation between greatest lower 

bounds and least upper bounds, and that every ordered set with the least-upper
bound property also has the greatest-lower-bound property. , 



THE REAL AND COMPLEX NUMBER SYSTEMS S 

1.11 Theorem Suppose Sis an ordered set with the /east-upper-bound property, 
B c S, B is not empty, and B is bounded below. Let L be the set of a// lower 
bounds of B. Then 

ex= supL 
exists in S, and ot: = inf B. 

In particular, inf B exists in S. 

Proof Since B is bounded below, L is not empty. Since L consists of 
exactly those y e S which satisfy the inequality y ~ x for every x e B, we 
see that every x e B is an upper bound of L. Thus L is bounded above. 
Our hypothesis about S implies the ref ore that L has a supremum in S; 
call it ex. 

If y < ex then (see Definition 1.8) y is not an upper bound of L, 
hence y ¢ B. It follows that ex~ x for every x e B. Thus ot: e L. 

If ex < f3 then /3 ¢ L, since ex is an upper bound of L. 
We have shown that ex e L but f3 ¢ L if /3 > ex. In other words, ot: 

is a lower bound of B, but f3 is not if /3 > ex. This means that ex= inf B. 

FIELDS 

1.12 Definition A field is a set F with two operations, called addition and 
multiplication, which satisfy the following so-called ''field axioms'' (A), (M), 
and (D): 

(A) Axioms for addition 

(Al) If x e F and ye F, then their sum x + y is in F. 
(A2) Addition is commutative: x + y = y + x for all x, ye F. 
(A3) Addition is associative: (x + y) + z = x + (y + z) for all x, y, z e F. 
(A4) F contains an element O such that O + x = x for every x e F. 
(AS) To every x e F corresponds an element -x e F such that 

X +(-x) = 0. 

(M) Axioms for multiplication 

(Ml) If x e F and ye F, then their product xy is in F. 
(M2) Multiplication is commutative: xy = yx for all x, ye F. 
(M3) Multiplication is associative: (xy)z = x(yz) for all x, y, z e F. 
(M4) F contains an element 1 'I: 0 such that Ix= x for every x e F. 
(MS) If x e F and x 'I: 0 then there exists an element 1/x e F such that 

x·(l/x)=l. 
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(D) The distributive law 

x(y + z) = xy + xz 

holds for all x, y, z e F. 

1.13 Remarks 

(a) One usually writes (in any field) 

X 2 3 x - y, - , x + y + z, xyz, x , x , 2x, 3x, ... 
y 

in place of 

X + (-y), X' 
1 
- ' (x + y) + z, (xy)z, xx, XXX, X + X, X + X + x, .... 

(b) The field axioms clearly hold in Q, the set of all rational numbers, if 
addition and multiplication have their customary meaning. Thus Q is a 
field. 
(c) Although it is not our purpose to study fields (or any other algebraic 
structures) in detail, it is worthwhile to prove that some familiar properties 
of Q are consequences of the field axioms; once we do this, we will not 
need to do it again for the real numbers and for the complex numbers. 

1.14 Proposition The axioms for addition imply the following statements. 

(a) If x + y = x + z then y = z. 
(b) If x + y = x then y = 0. 
( c) If x + y = 0 then y = - x. 
(d) -(-x) = x. 

Statement (a) is a cancellation law. Note that (b) asserts the uniqueness 
of the element whose existence is assumed in (A4), and that (c) does the same 
for (AS). 

Proof If x + y = x + z, the axioms (A) give 

y = 0 + y = ( -x + x) + y = -x + (x + y) 
= -x + (x + z) = (-x + x) + z = 0 + z = z. 

This proves (a). Take z = 0 in (a) to obtain (b). Take z = -x in (a) to 
obtain (c). 
Since -x + x = 0, (c) (with -x in pl~ce of x) gives (d). 



THE REAL AND COMPLEX NUMBER SYSTEMS 7 

1.15 Proposition The axioms for multiplication imply the following statements. 

(a) If x =I= 0 and xy = xz then y = z. 
(b) Ifx =I= 0 and xy = x then y = 1. 
(c) If x =I= 0 and xy = 1 then y = 1/x. 
(d) If x =I= 0 then 1/(1/x) = x. 

The proof is so similar to that of Proposition 1.14 that we omit it. 

1.16 Proposition The field axioms imply the following statements, for any x, y, 
zeF. 

(a) Ox= 0. 
(b) If x =I= 0 and y =I= 0 then xy =I= 0. 
(c) (-x)y = -(xy) = x(-y). 
(d) (-x)(-y) = xy. 

Proof Ox+ Ox= (0 + O)x = Ox. Hence l.14(b) implies that Ox= 0, and 
(a) holds. 

Next, assume x =I= 0, y =I= 0, but xy = 0. Then (a) gives 

1 1 1 
1 = - - xy = -

y X y 

a contradiction. Thus (b) holds. 
The first equality in (c) comes from 

1 
- 0 = 0, 
X 

( - x)y + xy = ( - x + x)y = Oy = 0, 

combined with 1.14(c); the other half of (c) is proved in the same way. 
Finally, 

(-x)(-y)= -[x(-y)]= -[-(xy)]=xy 

by (c) and 1.14(d). 

1.17 Definition An ordered.field is a.field F which is also an ordered set, such 
that 

(i) x + y < x + z if x, y, z e F and y < z, 
(ii) xy > 0 if x e F, y e F, x > 0, and y > 0. 

If x > 0, we call x positive; if x < 0, xis negative. 
For example, Q is an ordered field. 
All the familiar rules for working with inequalities apply in every ordered 

field: Multiplication by positive [negative] quantities preserves [reverses] in
equalities, no square is negative, etc. The following proposition lists some of 
these. 
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1.18 Proposition The following statements are true in every ordered field. 

(a) If x > 0 then - x < 0, and vice versa. 
(b) If x > 0 and y < z then xy <xz. 
(c) If x < 0 and y < z then xy > xz. 
(d) If x 'I: 0 then x 2 > 0. In particular, 1 > 0. 
(e) If O < x < y then O < 1/y < 1/x. 

Proof 
(a) If x > 0 then O = -x + x > -x + 0, so that -x < 0. If x < 0 then 
0 = -x + x < -x + 0, so that -x > 0. This proves (a). 
(b) Since z > y, we have z - y > y - y = 0, hence x(z - y) > 0, and 
therefore 

xz = x(z - y) + xy > 0 + xy = xy. 

(c) By (a), (b), and Proposition l.16(c), 

-[x(z -y)] = (-x)(z -y) > 0, 

so that x(z - y) < 0, hence xz < xy. 
(d) If x > 0, part (ii) of Definition 1.17 gives x 2 > 0. If x < 0, then 
-x > 0, hence (-x)2 > 0. But x 2 = (-x)2

, by Proposition l.16(d). 
Since 1 = 12

, 1 > 0. 
(e) lfy > 0 and v ~ 0, thenyv ~ 0. Buty · (1/y) = 1 > 0. Hence 1/y > 0. 
Likewise, 1/x > 0. If we multiply both sides of the inequality x < y by 
the positive quantity (1/x)(l/y), we obtain 1/y < 1/x. 

THE REAL FIELD 

We now state the existence theorem which is the core of this chapter. 

1.19 Theorem There exists an ordered field R which has the /east-upper-bound 
property. 

Moreover, R contains Q as a subfield. 

The second statement means that Q c R and that the operations of 
addition and multiplication in R, when applied to members of Q, coincide with 
the usual operations on rational numbers; also, the positive rational numbers 
are positive elements of R. 

The members of Rare called real numbers. 
The proof of Theorem 1.19 is rather long and a bit tedious and is the ref ore 

presented in an Appendix to Chap. 1. The proof actually constructs R from Q. 
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The next theorem could be extracted from this construction with very 
little extra effort. However, we prefer to derive it from Theorem 1.19 since this 
provides a good illustration of what one can do with the least-upper-bound 
property. 

1.20 Theorem 

(a) If x e R, y e R, and x > 0, then there is a positive integer n such that 

nx > y. 

(b) If x e R, ye R, and x < y, then there exists ape Q such that x < p < y. 

Part (a) is usually referred to as the archimedean property of R. Part (b) 
may be stated by saying that Q is dense in R: Between any two real numbers 
there is a rational one. 

Proof 
(a) Let A be the set of all nx, where n runs through the positive integers. 
If (a) were false, then y would be an upper bound of A. But then A has a 
least upper bound in R. Put a= sup A. Since x > 0, a - x < a, and 
a - xis not an upper bound of A. Hence a - x < mx for some positive 
integer m. But then °' < (m + l)x e A, which is impossible, since a is an 
upper bound of A. 
(b) Since x < y, we have y - x > 0, and (a) furnishes a positive integer 
n such that 

n(y - x) > 1. 

Apply (a) again, to obtain positive integers m1 and m2 such that m1 > nx, 
m2 > -nx. Then 

-m2 < nx < m1• 

Hence there is an integer m (with -m2 ~ m ~ m1) such that 

m - 1 ~ 11x < m. 

If we combine these inequalities, we obtain 

nx < m ~ 1 + nx < ny. 

Since n > 0, it follows that 

This proves (b), with p = m/n. 

m 
X < - < y. 

n 
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We shall now prove the existence of nth roots of positive reals. This 
proof will show how the difficulty pointed out in the Introduction (irration-
ality of y'2) can be handled in R. 

1.21 Theorem For every real x > 0 and every integer n > 0 there is one 
and only one positive real y such that y" = x. 

This number y is written i-;; or x1
'"· 

Proof That there is at most one such y is clear, since O < y1 < y2 implies 
)";<)1. 

Let E be the set consisting of all positive real numbers t such that 
t" < x. 

If t = x/(1 + x) then O S t < 1. Hence t" s t < x. Thus t e E, and 
E is not empty. 

If t > 1 + x then t" ~ t > x, so that t ¢ E. Thus 1 + x is an upper 
bound of E. 

Hence Theorem 1.19 implies the existence of 

y = sup E. 

To prove that y" = x we will show that each of the inequalities y" < x 
and y" > x leads to a contradiction. 

The identity b" - a"= (b - a)(b"- 1 + b"- 2a + · · · + a"- 1) yields 
the inequality 

b" - a"< (b - a)nb"- 1 

when O <a< b. 
Assume y" < x. Choose h so that O < h < 1 and 

h< x-y" . 
n(y + l)n-1 

Put a = y, b = y + h. Then 

(y + h)" - y" < hn(y + h)n-l < hn(y + l)"- 1 < x - y". 

Thus (y + h)" < x, and y +he E. Since y + h > y, this contradicts the 
fact that y is an upper bound of E. 

Assume y" > x. Put 

y" - X 
k=--· ny"-1 

Then O < k < y. If t ~ y - k, we conclude that 

y" - t" ~ y" - (y - k)" < kny"- 1 = y" - x. 

Thus t" > x, and t ¢ E. It follows that y - k is an upper bound of E. 
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But y - k < y, which contradicts the fact that y is the least upper bound 
of E. 

Hence y" = x, and the proof is complete. 

Corollary If a and b are positive real numbers and n is a positive integer, then 

(ab)lfn = a1fnb1fn. 

Proof Put ot: = a11", /3 = b11". Then 

ab = a." /3" = ( a.{3)", 

since multiplication is commutative. [Axiom (M2) in Definition 1.12.J 
The uniqueness assertion of Theorem 1.21 shows the ref ore that 

(ab)tfn = a.{3 = a11nb11n. 

1.22 Decimals We conclude this section by pointing out the relation between 
real numbers and decimals. 

Let x > 0 be real. Let n0 be the largest integer such that n0 ~ x. (Note that 
the existence of n0 depends on the archimedean property of R.) Having chosen 
n0 , n1, ••• , nk-t, let nk be the largest integer such that 

n1 nk 
no + 10 + ... + 10k ~ x. 

Let Ebe the set of these numbers 

(5) (k = 0, 1, 2, ... ). 

Then x = sup E. The decimal expansion of x is 

(6) no . n1n2 n3 .... 

Conversely, for any infinite decimal (6) the set E of numbers (5) is bounded 
above, and (6) is the decimal expansion of sup E. 

Since we shall never use decimals, we do not enter into a detailed 
discussion. 

THE EXTENDED REAL NUMBER SYSTEM 

1.23 Definition The extended real number system consists of the real field R 
and two symbols, + oo and - oo. We preserve the original order in R, and 
define 

-oo<x<+oo 
for every x e R. 
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It is then clear that + oo is an upper bound of every subset of the extended 
real number system, and that every nonempty subset has a least upper bound. 
If, for example, E is a nonempty set of real numbers which is not bounded 
above in R, then sup E = + oo in the extended real number system. 

Exactly the same remarks apply to lower bounds. 

The extended real number system does not form a field, but it is customary 
to make the following conventions: 

(a) If xis real then 

X + 00 = +oo, x-oo=-oo 
' 

X = X = O. 
+oo -oo 

(b) If x > 0 then x · (+oo) = +oo, x · (-oo) = -oo. 
( c) If x < 0 then x · ( + oo) = - oo, x · ( - oo) = + oo. 

When it is desired to make the distinction between real numbers on the 
one hand and the symbols + oo and - oo on the other quite explicit, the former 
are called.finite. 

THE COMPLEX FIELD 

1.24 Definition A complex number is an ordered pair (a, b) of real numbers. 
''Ordered'' means that (a, b) and (b, a) are regarded as distinct if a-:/= b. 

Let x = (a, b), y = (c, d) be two complex numbers. We write x = y if and 
only if a= c and b = d. (Note that this definition is not entirely superfluous; 
think of equality of rational numbers, represented as quotients of integers.) We 
define 

x + y = (a + c, b + d), 

xy = (ac - bd, ad+ be). 

1.25 Theorem These definitions of addition and multiplication turn the set of 
all complex numbers into afield, with (0, 0) and (1, 0) in the role ofO and 1. 

' 

Proof We simply verify the field axioms, as listed in Definition 1.12. 
(Of course, we use the field structure of R.) 

Let x = (a, b), y = (c, d), z = (e,f). 
(Al) is clear. 
(A2) x + y =(a+ c, b + d) = (c + a, d + b) = y + x. 
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(A3) (x + y) + z = (a + c, b + d) + (e,f) 
= (a + c + e, b + d + f) 
= (a, b) + (c + e, d + f) = x + (y + z). 

(A4) x + 0 = (a, b) + (0, 0) = (a, b) = x. 
(A5) Put -x = (-a, -b). Then x + (-x) = (0, 0) = 0. 
(Ml) is clear. 
(M2) xy = (ac - bd, ad+ be) = (ca - db, da + cb) = yx. 
(M3) (xy)z = (ac - bd, ad+ bc)(e,f) 

= (ace - bde - adf - bcf, acf - bdf + ade + bee) 
= (a, b)(ce - df, cf+ de)= x(yz). 

(M4) Ix= (1, O)(a, b) = (a, b) = x. 
(M5) If x-:/= 0 then (a, b) -:/= (0, 0), which means that at least one of the 
real numbers a, b is different from 0. Hence a2 + b2 > 0, by Proposition 
l. l 8(d), and we can define 

1 a -b 
- --
X 

• 
a2 + b2 ' a2 + b2 

Then 

1 a 
x . ~ = (a, b) a2 + b2' 

(D) x(y + z) = (a, b)(e + e, d + f) 

-b 
= (], 0) = 1. 

a2 + b2 

= (ac + ae - bd- bf, ad+ af +be+ be) 

= (ac - bd, ad+ be) + (ae - bf, af + be) 

= xy + xz. 

1.26 Theorem For any real numbers a and b we have 

(a, 0) + (b, 0) = (a + b, 0), 

The proof is trivial. 

(a, O)(b, 0) = (ab, 0). 

Theorem 1.26 shows that the complex numbers of the form (a, 0) have the 
same arithmetic properties as the corresponding real numbers a. We can there
fore identify (a, 0) with a. This identification gives us the real field as a subfield 
of the complex field. 

The reader may have noticed that we have defined the complex numbers 
without any reference to the mysterious square root of - 1. We now show that 
the notation (a, b) is equivalent to the more customary a + bi. 

1.27 Definition i = (0, 1 ). 
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1.28 Theorem i2 = -1. 

Proof i2 = (0, 1)(0, 1) = (-1, 0) = -1. 

1.29 Theorem If a and bare real, then (a, b) =a+ bi. 

Proof 

a+ bi= (a, 0) + (b, 0)(0, 1) 

= (a, 0) + (0, b) = (a, b). 

1.30 Definition If a, b are real and z =a+ bi, then the complex number 
z = a - bi is called the conjugate of z. The numbers a and b are the real part 
and the imaginary part of z, respectively. 

We shall occasionally write 

a= Re(z), b = Im(z). 

1.31 Theorem If z and w are complex, then 

(a) z + w = z + w, 
(b) 
(c) 
(d) 

- -zw = z. w, 
z + z = 2 Re(z), z - z = 2i lm(z), 
zz is real and positive (except when z = 0). 

Proof (a), (b), and (c) are quite trivial. To prove (d), write z = a + bi, 
and note that zz = a2 + b2

• 

1.32 Definition If z is a complex number, its absolute value I z I is the non
negative square root of zz; that is, I z I = (zz) 112

• 

The existence (and uniqueness) of lzl follows from Theorem 1.21 and 
part ( d) of Theorem 1. 31. 

Note that when x is real, then x = x, hence Ix I =J x2
• Thus Ix I = x 

if x ~ 0, Ix I = -x if x < 0. 

1.33 Theorem Let z and w be complex numbers. Then 

(a) lzl > 0 unless z = 0, IOI = 0, 
(b) lzl = lzl, 
(c) I zw I = I z I I w I, 
(d) I Re z I ~ I z I, 
(e) I z + w I ~ I z I + I w I . 
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Proof (a) and (b) are trivial. Putz= a+ bi, w = c + di, with a, b, c, d 
real. Then 

I zw I 2 = (ac - bd)2 + (ad+ bc)2 = (a2 + b2)(c2 + d2) = I z I 2 I w I 2 

or I zw I 2 = ( I z I I w I )2
• Now (c) follows from the uniqueness assertion of 

Theorem 1.21. 
To prove (d), note that a2 ~ a2 + b2

, hence 

lal = Ja2 ~ Ja2 + b2. 

To prove (e), note that zw is the conjugate of zw, so that zw + zw = 
2 Re (zw). Hence 

I z + w I 2 = (z + w)(z + w) = zz + zw + zw + ww 

= I z I 2 + 2 Re ( zw) + I w I 2 

~ I z I 2 + 2 I zw I + I w I 2 

= I z I 2 + 21 z 11 w I + I w l 2 = < I z I + I w I )2
• 

Now (e) follows by taking square roots. 

1.34 Notation If x1, ••• , Xn are complex numbers, we write 

n 

X1 + X2 + • •. + Xn = L Xj. 
J= 1 

We conclude this section with an important inequality, usually known as 
the Schwarz inequality. 

1.35 Theorem If a1 , .•• , an and b1 , ••. , bn are complex numbers, then 

Proof Put A= l:lajl 2
, B = l:lbjl 2

, C = l:aj5j (in all sums in this proof, 
j runs over the values l, ... , n). If B = 0, then b1 = · · · = bn = 0, and the 
conclusion is trivial. Assume therefore that B > 0. By Theorem 1.31 we 
have 

I I Baj - Cbj 12 = L (Baj - Cbj)(Baj - Cbj) 

= B2 L I aj 12 
- BC L aj 5j - BC L iij bj + I Cl 2 L I bj 12 

= B2A - Bl c1 2 

= B(AB - I Cl 2). 
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Since each term in the first sum is nonnegative, we see that 

B(AB - I Cl 2) ~ 0. 

Since B > 0, it follows that AB - I Cl 2 ~ 0. This is the desired inequality. 

EUCLIDEAN SPACES 

1.36 Definitions For each positive integer k, let Rk be the set of all ordered 
k-tuples 

X = (X1, X2,,,,, Xk), 
' 

where x1 , •.. , xk are real numbers, called the coordinates of x. The elements of 
Rk are called points, or vectors, especially when k > 1. We shall denote vectors 
by boldfaced letters. If y = (y1, ••• , Yk) and if et is a real number, put 

x + Y = (x1 + Y1, • • • , xk + Yk), 

CtX = (etX1, , . , , CtXk) 

so that x + y e Rk and etx e Rk. This defines addition of vectors, as well as 
multiplication of a vector by a real number (a scalar). These two operations 
satisfy the commutative, associative, and distributive laws (the proof is trivial, 
in view of the analogous laws for the real numbers) and make Rk into a vector 
space over the real field. The zero element of Rk (sometimes called the origin or 
the null vector) is the point 0, all of whose coordinates are 0. 

We also define the so-called ''inner product'' (or scalar product) of x and 
y by 

k 

X. y = L XiYi 
i= 1 

and the norm of x by 
k 1/2 

Ixf • 
1 

The structure now defined (the vector space Rk with the above inner 
product and norm) is called euclidean k-space. 

1.37 Theorem Suppose x, y, z e Rk, and et is real. Then 

(a) lxl ~ O; 
(b) !xi = 0 if and only ifx = O; 
( C) I CtX I = I Ct I I X I ; 
( d) I X • y I ~ I X I I y I ; 
(e) lx+yl ~lxl + !YI; 
(f) lx-zl ~ lx-yl + ly-zl, 
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Proof (a), (b), and (c) are obvious, and (d) is an immediate consequence 
of the Schwarz inequality. By (d) we have 

Ix + y 12 = (x + y) · (x + y) 

=x·x+2x·y+y·y 

S lxl 2 +21xl IYI + IYl 2 

= ( I X I + I Y I )2
, 

so that (e) is proved. Finally, (f) follows from (e) if we replace x by 
x - y and y by y - z. 

1.38 Remarks Theorem 1.37 (a), (b), and (f) will allow us (see Chap. 2) to 
regard Rk as a metric space. 

R 1 (the set of all real numbers) is usually called the line, or the real line. 
Likewise, R2 is called the plane, or the complex plane ( compare Definitions 1.24 
and 1.36). In these two cases the norm is just the absolute value of the corre
sponding real or complex number. 

APPENDIX 

Theorem 1.19 will be proved in this appendix by constructing R from Q. We 
shall divide the construction into several steps. 

Step 1 The members of R will be certain subsets of Q, called cuts. A cut is, 
by definition, any set rx c Q with the following three properties. 

(I) rx is not empty, and rx #:. Q. 
(II) If p e rx, q e Q, and q < p, then q e rx. 

(Ill) If p e rx, then p < r for some re rx. 

The letters p, q, r, ... will always denote rational numbers, and rx, p, y, ... 
will denote cuts. 

Note that (III) simply says that rx has no largest member; (II) implies two 
facts which will be used freely: 

If p e rx and q ¢ rx then p < q. 
If r ¢ rx and r < s then s ¢ rx. 

Step 2 Define ''rx < P'' to mean: rx is a proper subset of p. 
Let us check that this meets the requirements of Definition 1.5. 
If rx < P and P < y it is clear that rx < y. (A proper subset of a proper sub

set is a proper subset.) It is also clear that at most one of the three relations 

(X < p, (X = p, p < a, 
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can hold for any pair rx, p. To show that at least one holds, assume that the 
first two fail. Then rx is not a subset of p. Hence there is ape rx with p,; p. 
If q e p, it follows that q < p (since p ,; P), hence q e rx, by (II). Thus p c rx. 
Since P =I= rx, we conclude; p < rx. 

Thus R is now an ordered set. 

Step 3 The ordered set R has the least-upper-bound property. 
To prove this, let A be a nonempty subset of R, and assume that p e R 

is an upper bound of A. Define y to be the union of all rx e A. In other words, 
p e y if and only if p e rx for some et e A. We shall prove that ye R and that 
y = sup A. 

Since A is not empty, there exists an et0 e A. This et0 is not empty. Since 
et0 c y, y is not empty. Next, y c /3 (since et c P for every et e A), and therefore 
y =I= Q. Thus y satisfies property (I). To prove (11) and (III), pick p e y. Then 
p e et1 for some rx1 e A. If q < p, then q e et1 , hence q e y; this proves (II). If 
r E Ct1 is so chosen that r > P, we see that r E '}' (since Ct1 C y), and therefore '}' 
satisfies (III). 

Thus ye R. 
It is clear that et ~ y for every et e A. 
Suppose <> < y. Then there is an s e y and that s ¢ o. Since s e y, s e et 

for some rx e A. Hence o < et, and o is not an upper bound of A. 
This gives the desired result: y = sup A. 

Step 4 If et e R and Pe R we define et + f3 to be the set of all sums r + s, where 
re et ands e p. 

We define O* to be the set of all negative rational numbers. It is clear that 
O* is a cut. We verify that the axioms for addition (see Definition 1.12) hold in 
R, with O* playing the role of 0. 

(Al) We have to show that et+ p is a cut. It is clear that rx + f3 is a 
nonempty subset of Q. Take r' ¢ et, s' ¢ p. Then r' + s' > r + s for all 
choices of re et, s e p. Thus r' + s' ¢ et + p. It follows that et + p has 
property (I). 

Pick p e et + p. Then p = r + s, with re et, s e p. If q < p, then 
q - s < r, so q - s e et, and q = (q - s) + s e et+ {3. Thus (11) holds. 
Choose t e et so that t > r. Then p < t +sand t + s e et+ fl. Thus (Ill) 
holds. 
(A2) et+ pis the set of all r + s, with re et, s e p. By the same definition, 
f3 + et is the set of all s + r. Since r + s = s + r for all re Q, s e Q, we 
have et + p = P + et. 

(A3) As above, this follows from the associative law in Q. 
(A4) Ifr e et ands e O*, then r + s < r, hence r + s e et. Thus rx + O* c et. 

To obtain the opposite inclusion, pick p e et, and pick re rx, r > p. Then 
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p - re O*, and p = r +(p - r) e rx + O*. Thus rx c rx + O*. We conclude 
that ex + O* = rx. 
(AS) Fix rx e R. Let P be the set of all p with the following property: 

There exists r > 0 such that - p - r ,; rx. 

In other words, some rational number smaller than - p fails to 
be in rx. 

We show that Pe Rand that rx + P = O*. 
If s ,; ex and p = - s - 1, then - p - 1 ,; ex, hence p e P. So P is not 

empty. If q e rx, then -q ¢ p. So p -:/= Q. Hence f3 satisfies (I). 
Pick p e P, and pick r > 0, so that -p - r,; ex. If q <p, then 

-q - r > -p - r, hence -q - r ¢ ex. Thus q e p, and (II) holds. Put 
t=p+(r/2). Then t>p, and -t-(r/2)= -p-rfiex, so that tep. 
Hence p satisfies (Ill). 

We have proved that P e R. 
If r e ex and s e /3, then --s ,; ex, hence r < -s, r + s < 0. Thus 

(X +PC 0*, 
To prove the opposite inclusion, pick v e O*, put w = -v/2. Then 

w > 0, and there is an integer n such that nw e ex but (n + l)w ¢ ex. (Note 
that this depends on the fact that Q has the archimedean property!) Put 
p = -(n + 2)w. Then pep, since -p - w ¢ ex, and 

v = nw + p e rx + p. 
Thus O* c ex+ p. 

We conclude that ex+ f3 = O*. 
This /3 will of course be denoted by - ex. 

Step 5 Having proved that the addition defined in Step 4 satisfies Axioms (A) 
of Definition 1.12, it follows that Proposition 1.14 is valid in R, and we can 
prove one of the requirements of Definition 1.17: 

If ex, {3, ye R and f3 < y, then ex + f3 < ex + y. 

Indeed, it is obvious from the definition of + in R that ex +pc ex + y; if 
we had ex + p = ex + y, the cancellation law (Proposition 1.14) would imply 
/3 = '}', 

It also follows that ex > O* if and only if - ex < O*. 

Step 6 Multiplication is a little more bothersome than addition in the present 
context, since products of negative rationals are positive. For this reason we 
confine ourselves first to R+, the set of all ex e R with ex> O*. 

If ex e R+ and Pe R+, we define ex/3 to be the set of all p such that p::::;; rs 
for some choice of re ex, s e p, r > 0, s > 0. 

We define 1 * to be the set of all q < 1. 
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Then the axioms (M) and (D) of Definition 1.12 hold, with R+ in place of F, 
and with 1 * in the role of 1. 

The proofs are so similar to the ones given in detail in Step 4 that we omit 
them. 

Note, in particular, that the second requirement of Definition 1.17 holds: 
If rx > O* and p > O* then rxp > O*. 

Step 7 We complete the definition of multiplication by setting rxO* = O*rx = O*, 
and by setting 

rxP = 
(-rx)(-P) 

-[(-rx)P1 

-[ex· (-P)1 

if rx < O*, p < O*, 

if rx < 0*, p > O*, 

if ex > O*, p < O*. 

The products on the right were defined in Step 6. 
Having proved (in Step 6) that the axioms (M) hold in R+, it is now 

perfectly simple to prove them in R, by repeated application of the identity 
y = -( -y) which is part of Proposition 1.14. (See Step 5.) 

The proof of the distributive law 

rx(P + y) = rxP + rxy 

breaks into cases. For instance, suppose rx > O*, p < O*, p + y > O*. Then 
y = (P + y) + ( -P), and (since we already know that the distributive law holds 
in R+) 

rxy = rx(P + y) + rx · (-p). 

But rx · (-P) = -(rxp). Thus 

rxP + rxy = rx(P + y ). 

The other cases are handled in the same way. 
We have now completed the proof that R is an ordered field with the least

upper-bound property. 

Step 8 We associate with each re Q the set r* which consists of all p e Q 
such that p < r. It is clear that each r* is a cut; that is, r* e R. Thec;e cuts satisfy 
the following relations: 

(a) r* + s* = (r + s)*, 
(b) r*s* = (rs)*, 
(c) r* < s* if and only if r < s. 

To prove (a), choose per* + s*. Then p = u + v, where u < r, v < s. 
Hence p < r + s, which says that p e (r + s)*. 
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Conversely, suppose p e (r + s)*. Then p < r + s. Choose t so that 
2t = r + s - p, put 

r' = r - t, s' = s - t. 

Then r' er*, s' es*, and p = r' + s', so that per* + s*. 
This proves (a). The proof of (b) is similar. 
If r < s then res*, but r ¢ r*; hence r* < s*. 
If r* < s*, then there is apes* such that p ¢ r*. Hence r ~ p < s, so 

that r < s. 
This proves (c). 

Step 9 We saw in Step 8 that the replacement of the rational numbers r by the 
corresponding ''rational cuts'' r* e R preserves sums, products, and order. This 
fact may be expressed by saying that the ordered field Q is isomorphic to the 
ordered field Q* whose elements are the rational cuts. Of course, r* is by no 
means the same as r, but the properties we are concerned with (arithmetic and 
order) are the same in the two fields. 

It is this identification of Q with Q* which allows us to regard Q as a 
subfield of R. 

The second part of Theorem 1.19 is to be understood in terms of this 
identification. Note that the same phenomenon occurs when the real numbers 
are regarded as a subfield of the complex field, and it also occurs at a much 
more elementary level, when the integers are identified with a certain subset of Q. 

It is a fact, which we will not prove here, that any two ordered fields with 
the least-upper-bound property are isomorphic. The first part of Theorem 1.19 
therefore characterizes the real field R completely. 

The books by Landau and Thurston cited in the Bibliography are entirely 
devoted to number systems. Chapter 1 of Knopp's book contains a more 
leisurely description of how R can be obtained from Q. Another construction, 
in which each real number is defined to be an equivalence class of Cauchy 
sequences of rational numbers (see Chap. 3), is carried out in Sec. 5 of the book 
by Hewitt and Stromberg. 

The cuts in Q which we used here were invented by Dedekind. The 
construction of R from Q by means of Cauchy sequences is due to Cantor. 
Both Cantor and Dedekind published their constructions in 1872. 

EXERCISES 

Unless the contrary is explicitly stated, all numbers that are mentioned in these exer
cises are understood to be real. 

1. If r is rational (r =I=- 0) and x is irrational, prove that r + x and rx are irrational. 
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2. Prove that there is no rational number whose square is 12. 
3. Prove Proposition 1.15. 
4. Let E be a nonempty subset of an ordered set; suppose IX is a lower bound of E 

and f3 is an upper bound of E. Prove that IX ::;: {3. 
5. Let A be a nonempty set of real numbers which is bounded below. Let - A be 

the set of all numbers - x, where x E A. Prove that 

inf A = -sup(-A). 

6. Fix b > 1. 
(a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that 

(bm)lfn = (b")lfq, 

Hence it makes sense to define b' = (bm) 11n. 

(b) Prove that br+s = b'bs if rands are rational. 
(c) If x is real, define B(x) to be the set of all numbers b', where t is rational and 
t ::;: x. Prove that 

b' = sup B(r) 

when r is rational. Hence it makes sense to define 

b" = sup B(x) 

for every real x. 
(d) Prove that b"+)I = b"b)I for all real x and y. 

7. Fix b > 1, y > 0, and prove that there is a unique real x such that b" = y, by 
completing the following outline. (This xis called the logarithm of y to the base b.) 
(a) For any positive integer n, bn - 1 ~ n(b - 1). 
(b) Hence b - 1 ~ n(b11n - 1). 
(c) If t > 1 and n > (b - 1)/(t - 1), then b11n < t. 
(d) If w is such that bw < y, then bw+<ltn> < y for sufficiently large n; to see this, 
apply part (c) with t = y · b-w. 
(e) If bw > y, then bw-< 11n> > y for sufficiently large n. 
(/) Let A be the set of all w such that bw < y, and show that x = sup A satisfies 
b" = y. 

(g) Prove that this x is unique. 

8. Prove that no order can be defined in the complex field that turns it into an ordered 
field. Hint: -1 is a square. 

9. Suppose z = a + bi, w = c + di. Define z < w if a < c, and also if a = c but 
b < d. Prove that this turns the set of all complex numbers into an ordered set. 
(This type of order relation is called a dictionary order, or lexicographic order, for 
obvious reasons.) Does this ordered set have the least-upper-bound property? 

10. Suppose z = a + bi, w = u + iv, and 

a= 
l wl + u 112 

2 ' b= 
I w l - u 112 

2 
• 
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Prove that z2 = w if v ~ 0 and that (z)2 = w if v ~ 0. Conclude that every complex 
number (with one exception!) has two complex square roots. 

11. If z is a complex number, prove that there exists an r ~ 0 and a complex number 
w with I wl = 1 such that z = rw. Are wand r always uniquely determined by z? 

12. If z1, ... , Zn are complex, prove that 

lz1+z2+···+znl ~lz1I + lz2I +···+lznl• 

13. If x, y are complex, prove that 

llxl - IYII ~ lx-yl, 

14. If z is a complex number such that lzl = 1, that is, such that zi= 1, compute 

11 +zl2+ ll-zl2, 

15. Under what conditions does equality hold in the Schwarz inequality? 
16. Suppose k ~ 3, x, y ER", Ix- YI = d> 0, and r > 0. Prove: 

(a) If 2r > d, there are infinitely many z e R" such that 

lz-xl = lz-yl =r. 

(b) If 2r = d, there is exactly one such z. 
(c) If 2r < d, there is no such z. 
How must these statements be modified if k is 2 or 1 ? 

17. Prove that 

Ix+ Yl 2 + Ix- Yl 2 = 2lxl 2 + 2IYl 2 

if XE R" and ye R". Interpret this geometrically, as a statement about parallel
ograms. 

18. If k ~ 2 and x ER", prove that there exists y ER" such that y ~ 0 but x • y = 0. 
Is this also true if k = 1 ? 

19. Suppose a e R", b ER". Find c e R" and r > 0 such that 

Ix-al =2lx-bl 

if and only if Ix - cl = r. 
(Solution: 3c = 4b- a, 3r = 2lb - al.) 

20. With reference to the Appendix, suppose that property (III) were omitted from the 
definition of a cut. Keep the same definitions of order and addition. Show that 
the resulting ordered set has the least-upper-bound property, that addition satisfies 
axioms (Al) to (A4) (with a slightly different zero-element!) but that (AS) fails. 



BASIC TOPOLOGY 

FINITE, COUNTABLE, AND UNCOUNTABLE SETS 

We begin this section with a definition of the function concept. 

2.1 Definition Consider two sets A and B, whose elements may be any objects 
whatsoever, and suppose that with each elen1ent x of A there is associated, in 
some manner, an element of B, which we denote by f(x). Then/ is said to be a 
function from A to B (or a mapping of A into B). The set A is called the domain 
off (we also say .f is defined on A), and the elements f(x) are called the vali1es 
off The set of all values off is called the range off 

2.2 Definition Let A and B be two sets and let f be a mapping of A into B. 
If E c: A,f(E) is defined to be the set of all elements f(x), for x EE. We call 
f(E) the image of E under f. In this notation, f(A) is the range off. It is clear 
that/(A) c: B. If /(A) = B, we say that/ maps A onto B. (Note that, according 
to this usage, onto is more specific than into.) 

If E c: B,1·- 1(E) denotes the set of all x EA such thatf(x) EE. We call 
1- 1 (E) the inverse image of E under f If y E B,f- 1(.Y) is the set of all x EA 
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such that f(x) = y. If, for each ye B,/- 1(y) consists of at most one element 
of A, then f is said to be a 1-1 (one-to-one) mapping of A into B. This may 
also be expressed as follows: / is a 1-1 mapping of A into B provided that 
f(x1) #= f(x2) whenever x1 #= x2 , x1 e A, x2 eA. 

(The notation x1 #= x2 means that x1 and x2 are distinct elements; other
wise we write x1 = x2 .) 

2.3 Definition If there exists a 1-1 mapping of A onto B, we say that A and B 
can be put in 1-1 correspondence, or that A and B have the same cardinal number, 
or, briefly, that A and B are equivalent, and we write A ,...,, B. This relation 
clearly has the following properties: 

It is reftexi ve: A ,...,, A. 
It is symmetric: If A ,...,, B, then B,...,, A. 
It is transitive: If A ,...,, B and B ,...,, C, then A ,...,, C. 

Any relation with these three properties is called an equivalence relation. 

2.4 Definition For any positive integer n, let Jn be the set whose elements are 
the integers 1, 2, ... , n; let J be the set consisting of all positive integers. For any 
set A, we say: 

(a) A is finite if A ,...,, Jn for some n (the empty set is also considered to be 
finite). 

(b) A is infinite if A is not finite. 
(c) A is countable if A,...,, J. 
(d) A is uncountable if A is neither finite nor countable. 
(e) A is at most countable if A is finite or countable. 

Countable sets are sometimes called enumerable, or denumerable. 
For two finite sets A and B, we evidently have A ,...,, B if and only if A and 

B contain the same number of elements. For infinite sets, however, the idea of 
''having the same number of elements'' becomes quite vague, whereas the notion 
of 1-1 correspondence retains its clarity. 

2.5 Example Let A be the set of all integers. Then A is countable. For, 
consider the following arrangement of the sets A and J: 

A: 0, 1, - 1, 2, - 2, 3, - 3, ... 
J: 1, 2, 3, 4, 5, 6, 7, ... 
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We can, in this example, even give an explicit formula for a function f 
from J to A which sets up a 1-1 correspondence: 

n 
(n even), -

2 
f(n) = 

n-1 
(n odd). -

2 

2.6 Remark A finite set cannot be equivalent to one of its proper subsets. 
That this is, however, possible for infinite sets, is shown by Example 2.5, in 
which J is a proper subset of A. 

In fact, we could replace Definition 2.4(b) by the statement: A is infinite if 
A is equivalent to one of its proper subsets. 

2. 7 Definition By a sequence, we mean a function f defined on the set J of all 
positive integers. If f(n) = Xn, for n e J, it is customary to denote the sequence 
f by the symbol {xn}, or sometimes by x1, x2 , x 3 , •••• The values of/, that is, 
the elements Xn , are called the terms of the sequence. If A is a set and if Xn e A 
for all n e J, then {xn} is said to be a sequence in A, or a sequence of elements of A. 

Note that the terms x1, x 2 , x 3 , ••• of a sequence need not be distinct. 
Since every countable set is the range of a 1-1 function defined on J, we 

may regard every countable set as the range of a sequence of distinct terms. 
Speaking more loosely, we may say that the elements of any countable set can 
be ''arranged in a sequence." 

Sometimes it is convenient to replace J in this definition by the set of all 
nonnegative integers, i.e., to start with O rather than with 1. 

2.8 Theorem Every infinite subset of a countable set A is countable. 

Proof Suppose E c A, and E is infinite. Arrange the elements x of A in 
a sequence {xn} of distinct elements. Construct a sequence {nk} as follows: 

Let n1 be the smallest positive integer such that Xn, e E. Having 
chosen n1 , ... , nk-l (k = 2, 3, 4, ... ), let nk be the smallest integer greater 
than nk- i such that x,.k e E. 

Puttingf(k) = Xnk (k = 1, 2, 3, ... ), we obtain a 1-1 correspondence 
between E and J. 

The theorem shows that, roughly speaking, countable sets represent 
the ''smallest'' infinity: No uncountable set can be a subset of a countable 
set. 

2.9 Definition Let A and n be sets, and suppose that with each element ix of 
A there is associated a subset of n which we denote by E«. 
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The set whose elements are the sets E11 will be denoted by {E11}. Instead 
of speaking of sets of sets, we shall sometimes speak of a collection of sets, or 
a family of sets. 

The union of the sets E11 is defined to be the set S such that x e S if and only 
if x e E11 for at least one ex e A. We use the notation 

(I) S = LJ Eai, 
ll&A 

If A consists of the integers I, 2, ... , n, one usually writes 

n 

(2) S= LJ Em 
m•l 

or 

(3) 

If A is the set of all positive integers, the usual notation is 

(4) 

The symbol oo in ( 4) merely indicates that the union of a countable col
lection of sets is taken, and should not be confused with the symbols + oo, - oo, 
introduced in Definition 1.23. 

The intersection of the sets E11 is defined to be the set P such that x e P if 
and only if x e E11 for every ex e A. We use the notation 

(5) 

or 

n 

(6) P = n Em = E1 ("I E2 ("I • • • ("I E,., 
m=l 

or 

(7) 

as for unions. If A ("I B is not empty, we say that A and B intersect; otherwise 
they are disjoint. 

2.10 Examples 

(a) Suppose E1 consists of I, 2, 3 and E2 consists of 2, 3, 4. Then 
E 1 u E2 consists of I, 2, 3, 4, whereas E1 ("I E2 consists of 2, 3. 
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(b) Let A be the set of real numbers x such that O < x :s-; 1. For every 
x e A, let E:% be the set of real numbers y such that O < y < x. Then 

(i) 
(ii) 

(iii) 

E:% c Ez if and only if O < x :s': z :s': 1 ; 
LJ E:% = E1 ; 

:%EA 

n E:% is empty; 
:%EA 

(i) and (ii) are clear. To prove (iii), we note that for every y > 0, y ¢ E:% 
if X < y. Hence y ¢ n:%EA E:%. 

2.11 Remarks Many properties of unions and intersections are quite similar 
to those of sums and products; in fact, the words sum and product were some
times used in this connection, and the symbols l: and TI were written in place 
of LJ and n. 

(8) 

(9) 

The commutative and· associative laws are trivial: 

AuB=BuA; An B = B n A. 

(A u B) u C = A u (B u C); (A n B) n C = A n (B n C). 

Thus the omission of parentheses in (3) and (6) is justified. 
The distributive law also holds: 

(10) A n (B u C) = (A n B) u (A n C). 

To prove this, let the left and right members of (10) be denoted by E and F, 
respectively. 

Suppose x e E. Then x e A and x e B u C, that is, x e B or x e C (pos
sibly both). Hence x e A n B or x e A n C, so that x e F. Thus E c F. 

Next, suppose x e F. Then x e An B or x e An C. That is, x e A, and 
x e B u C. Hence x e A n (B u C), so that F c E. 

It follows that E = F. 
We list a few more relations which are easily verified: 

(11) 

(12) 

AC Au B, 

An B c A. 

If O denotes the empty set, then 

(13) 

If A c: B, then 

(14) 

Au O =A, 

Au B =B, 

An O = 0. 

An B =A. 
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2.12 Theorem Let { En}, n = 1, ,7, 3, ... , be a sequence of countable sets, and put 
00 

(15) S = LJ En. 
n= 1 

Then Sis countable. 

(16) 

(17) 

Proof Let every set En be a1·ranged in a sequence {xnk}, k = 1, 2, 3, ... , 
and consider the infinite array 

Xr1' • • • 

X24 • • • 

31 X34 • • • 

X42 X43 X44 • • • 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

in which the elements of En form the nth row. The array contains all 
elements of S. As indicated by the arrows, these elements can be 
arranged in a sequence 

If any two of the sets En have elements in common, these will appear more 
than once in (17). Hence there is a subset T of the set of all positive 
integers such that S ~ T, which shows that S is at most countable 
(Theorem 2.8). Since E1 c S, and E1 is infinite, S is infinite, and thus 
countable. 

Corollary Suppose A is at most countable, and, for every ex EA, Ba. is at most 
countable. Put 

T/1en Tis at most countable. 
For Tis equivalent to a subset of (15). 

2.13 Theorem Let A be a countable set, and let Bn be the set of all n-tuples 
(a1 , •.• , an), where ak E A (k = 1, ... , ti), and the elements a1 , ••• , an need not be 
distinct. Then Bn is countable. 

Proof That B1 is countable is evident, since B1 = A. Suppose Bn-t is 
countable (n = 2, 3, 4, ... ). The elements of Bn are of the form 

(18) (b,a) (bEBn-1,aEA). 

For every fixed b, the set of pairs (b, a) is equivalent to A, and hence 
countable. Thus Bn is the union of a countable set of countable sets. By 
Theorem 2.12, Bn is countable. 

The theorem follows by induction. 
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Corollary The set of all rational numbers is countable. 

Proof We apply Theorem 2.13, with n = 2, noting that every rational r 
is of the form bf a, where a and b are integers. The set of pairs (a, b), and 
therefore the set of fractions bf a, is countable. 

In fact, even the set of all algebraic numbers is countable (see Exer
cise 2). 

That not all infinite sets are, however, countable, is shown by the next 
theorem. 

2.14 Theorem Let A be the set of all sequences whose elements are the digits 0 
and 1. This set A is uncountable. 

The elements of A are sequences like 1, 0, 0, 1, 0, 1, 1, 1, .... 

Proof Let E be a countable subset of A, and let E consist of the se
quences s1 , s2 , s3 , •••• We construct a sequences as follows. If the nth 
digit in sn is 1, we let the nth digit of s be 0, and vice versa. Then the 
sequence s differs from every member of E in at least one place; hence 
s ¢ E. But clearly s EA, so that Eis a proper subset of A. 

We have shown that every countable subset of A is a proper subset 
of A. It follows that A is uncountable (for otherwise A would be a proper 
subset of A, which is absurd). 

The idea of the above proof was first used by Cantor, and is called Cantor's 
diagonal process; for, if the sequences s1 , s2 , s3 , ••• are placed in an array like 
(16), it is the elements on the diagonal which are involved in the construction of 
the new sequence. 

Readers who are familiar with the binary representation of the real 
numbers (base 2 instead of 10) will notice that Theorem 2.14 implies that the 
set of all real numbers is uncountable. We shall give a second proof of this 
fact in Theorem 2.43. 

METRIC SPACES 

2.15 Definition A set X, whose elements we shall call points, is said to be a 
metric space if with any two points p and q of X there is associated a real 
number d(p, q), called the distance from p to q, such that 

(a) d(p, q) > 0 if p # q; d(p, p) = O; 
(b) d(p, q) = d(q, p); 
(c) d(p, q) ~ d(p, r) + d(r, q), for any re X. 

Any function with these three properties is called a distance function, or 
a metric. 
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2.16 Examples The most important examples of metric spaces, from our 
standpoint, are the euclidean spaces Rk, especially R 1 (the real line) and R2 (the 
complex plane); the distance in Rk is defined by 

(19) d(x, y) = Ix - y I 

By Theorem 1.37, the conditions of Definition 2.15 are satisfied by (19). 
It is important to observe that every subset Y of a metric space Xis a metric 

space in its own right, with the same distance function. For it is clear that if 
conditions (a) to (c) of Definition 2.15 hold for p, q, re X, they also hold if we 
restrict p, q, r to lie in Y. 

Thus every subset of a euclidean space is a metric space. Other examples 
are the spaces <G(K) and !R2(µ), which are discussed in Chaps. 7 and 11, respec
tively. 

2.17 Definition By the segment (a, b) we mean the set of all real numbers x 
such that a< x < b. 

By the interval [a, b] we mean the set of all real numbers x such that 
a~ x ~ b. 

Occasionally we shall also encounter ''half-open intervals'' [a, b) and (a, b]; 
the first consists of all x such that a ~ x < b, the second of all x such that 
a< x ~ b. 

If a;< b; for i =I, ... , k, the set of all points x = (x1 , ••• , xk) in Rk whose 
coordinates satisfy the inequalities a;~ X; ~ b; (I ~ i ~ k) is called a k-cell. 
Thus a I-cell is an interval, a 2-cell is a rectangle, etc. 

If x E Rk and r > 0, the open (or closed) ball B with center at x and radiu~ r 
is defined to be the set of ally E Rk such that jy - xi< r (or IY - xi:::; r). 

We call a set E c Rk convex if 

AX+ (I - A)Y EE 

whenever x e E, y e E, and O < A < I. 
For example, balls are convex. For if I y - x I < r, I z - x I < r, and 

0 < A < I, we have 

I AY + (I - A)z - x I = I A(Y - x) + (1 - A)(z - x) I 
~AI y - x I + (1 - A) I z - x I <Ar+ (1 - A)r 

-r - . 

The same proof applies to closed balls. It is also easy to see that k-cells are 
convex. 
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2.18 Definition Let X be a metric space. All points and sets mentioned below 
are understood to be elements and subsets of X. 

(a) A neighborhood of p is a set N,(p) consisting of all q such that 
d(p, q) < r, for some r > 0, The number r is called the radius of N,(p). 

(b) A point p is a limit point of the set E if every neighborhood of p 
contains a point q ¥= p such that q e £. 

(c) If p e E and p is not a limit point of E, then p is called an isolated 
point of E. 

(d) Eis closed if every limit point of Eis a point of E. 
(e) A point p is an interior point of E if there is a neighborhood N of p 

such that N c: E. 
(f) E is open if every point of E is an interior point of E. 
(g) The complement of E (denoted by Ee) is the set of all points p e X 

such that p ¢ E. 
(h) E is perfect if E is closed and if every point of E is a limit point 

of E. 
(i) Eis bounded if there is a real number Mand a point q e X such that 

d(p, q) < M for all p e E. 
(j) E is dense in X if every point of X is a limit point of E, or a point of 

E (or both). 

Let us note that in R1 neighborhoods are segments, whereas in R2 neigh
borhoods are interiors of circles. 

2.19 Theorem Every neighborhood is an open set. 

Proof Consider a neighborhood E = N,(p), and let q be any point of E. 
Then there is a positive real number h such that 

d(p, q) = r - h. 

For all points s such that d(q, s) < h, we have then 

d(p, s):::;; d(p, q) + d(q, s) < r - h + h = r, 

so that s e E. Thus q is an interior point of E. 

2.20 Theorem If p is a limit point of a set E, then every neighborhood of p 
contains infinitely many points of E. 

Proof Suppose there is a neighborhood N of p which contains only a 
finite number of points of E. Let q1 , •.. , qn be those points of N n E, 
which are distinct from p, and put 

r = min d(p, qm) 
1:Sm:Sn 
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[we use this notation to denote the smallest of the numbers d(p, q1), ••• , 

d(p, qn)J. The minimum of a finite set of positive numbers is clearly posi
tive, so that r > 0. 

The neighborhood Nr(P) contains no point q of E such that q ~ p, 
so that p is not a limit point of E. This contradiction establishes the 
theorem. 

Corollary A finite point set has no limit points. 

2.21 Examples Let us consider the following subsets of R2 : 

(a) The set of all complex z such that I z I < 1. 
(b) The set of all complex z such that I z I s; I. 
(c) A nonempty finite set. 
(d) The set of all integers. 
(e) The set consisting of the numbers 1/n (n = 1, 2, 3, ... ). Let us note 
that this set E has a limit point (namely, z = 0) but that no point of E is 
a limit point of E; we wish to stress the difference between having a limit 
point and containing one. 
(f) The set of all complex numbers (that is, R2). 

(g) The segment (a, b). 

Let us note that (d), (e), (g) can be regarded also as subsets of R1 • 

Some properties of these sets are tabulated below: 

Closed Open Perfect Bounded 
(a) No Yes No Yes 
(b) Yes No Yes Yes 
(c) Yes No No Yes 
(d) Yes No No No 
(e) No No No Yes 
(f) Yes Yes Yes No 
(g) No No Yes 

In (g), we left the second entry blank. The reason is that the segment 
(a, b) is not open ifwe regard it as a subset of R2, but it is an open subset of R1• 

2.22 'I'heorem Let { E.} be a (finite or infinite) collection of sets E. . Then 

(20) 

Proof Let A and B be the left and right members of (20). If x e A, then 
X ¢ u. E.' hence X ' E. for any IX, hence Xe E: for every IX, so that X en E!. 
Thus Ac: B. 
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Conversely, if x e B, then x e E! for every IX, hence x ¢Ea.for any IX, 

hence x ¢ U. E., so that x e ( U11 E.)c. Thus B c A. 
It follows that A = B. 

2.23 Theorem A set E is open if and only if its complement is closed. 

Proof First, suppose Ee is closed. Choose x e E. Then x ¢ Ee, and xis 
not a limit point of Ee. Hence there exists a neighborhood N of x such 
that Ee r. N is empty, that is, N c E. Thus x is an interior point of E, 
and E is open. 

Next, suppose E is open. Let x be a limit point of Ee. Then every 
neighborhood of x contains a point of Ee, so that x is not an interior point 
of E. Since E is open, this means that x e Ee. It follows that Ee is closed. 

Corollary A set Fis closed if and only if its complement is open. 

2.24 Theorem 

(21) 

(a) For any collection {G.} of open sets, U. G. is open. 
(b) For any collection {F.} of closed sets, n. F. is closed. 
(c) For any finite collection G1, ••• , Gn of open sets, ni= 1 Gi is open. 
(d) For any finite collection F1, ••• , Fn of closed sets, Ui = 1 F, is closed. 

Proof Put G = U. G.. If x e G, then x e G. for some IX. Since x is an 
interior point of G., x is also an interior point of G, and G is open. This 
proves (a). 

By Theorem 2.22, 

and F! is open, by Theorem 2.23. Hence (a) implies that (21) is open so 
that n/A F. is closed. 

Next, put H = n;= 1 G,. For any x e H, there exist neighborhoods 
N, of x, with radii r,, such that N, c G, (i = 1, ... , n). Put 

r = min (r1, ••. , rn), 

and let N be the neighborhood of x of radius r. Then N c G, for i = 1, 
... , n, so that N c H, and His open. 

By taking complements, (d) follows from (c): 
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2.25 Examples In parts (c) and (d) of the preceding theorem, the finiteness of 

the collections is essential. For let Gn be the segment - ! , ! (n = 1, 2, 3, ... ). 
n n 

Then Gn is an open subset of R1
• Put G = ():-'= 1 Gn. Then G consists of a single 

point (namely, x = 0) and is therefore not an open subset of R1
• 

Thus the intersection of an infinite collection of open sets need not be open. 
Similarly, the union of an infinite collection of closed sets need not be closed. 

2.26 Definition If X is a metric space, if E c: X, and if E' denotes the set of 
all limit points of E in X, then the closure of E is the set E = E u E'. 

2.27 Theorem If Xis a metric space and E c: X, then 

(a) Eis closed, 
(b) E = E if and only if Eis closed, 
(c) E c: F for every closed set F c: X such that E c: F. 

By (a) and (c), E Is the smallest closed subset of X that contains E. 

Proof 
(a) If p e X and p ¢ E then p is neither a point of E nor a limit point of E. 
Hence p has a neighborhood which does not intersect E. The complement 
of E is the ref ore open. Hence E is closed. 
(b) If E = E, (a) implies that Eis closed. If Eis closed, then E' c: E 
[by Definitions 2.18(d) and 2.26], hence E = E. 
( c) If F is closed and F =:J E, then F =:J F', hence F =:J E'. Thus F =:J E. 

2.28 Theorem Let Ebe a nonempty set of real numbers which is bounded above. 
Let y = sup E. Then y e E. Hence y e E if Eis closed. 

Compare this with the examples in Sec. 1.9. 

Proof If y e E then y e E. Assume y ¢ E. For every h > 0 there exists 
then a point x e E such that y - h < x < y, for otherwise y - h would be 
an upper bound of E. Thus y is a limit point of E. Hence ye E. 

2.29 Remark Suppose E c Y c: X, where Xis a metric space. To say that E 
is an open subset of X means that to each point p e E there is associated a 
positive number r such that the conditions d(p, q) < r, q e X imply that q e E. 
But we have already observed (Sec. 2.16) that Y is also a metric space, so that 
our definitions may equally well be made within Y. To be quite explicit, let us 
say that E is open relative to Y if to each p e E there is associated an r > 0 such 
that q e E whenever d(p, q) < r and q e Y. Example 2.21(g) showed that a set 
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may be open relative to Y without being an open subset of X. However, there 
is a simple relation between these concepts, which we now state. 

2.30 Theorem Suppose Y c: X. A subset E of Y is open relative to Y if and 
only if E = Y n G for some open subset G of X. 

Proof Suppose Eis open relative to Y. To each p e E there is a positive 
number r P such that the conditions d(p, q) < r P, q e Y imply that q e E. 
Let VP be the set of all q e X such that d(p, q) < rP, and define 

G = u VP. 
peE 

Then G is an open subset of X, by Theorems 2.19 and 2.24. 
Since p e VP for all p e E, it is clear that E c: G n Y. 
By our choice of VP, we have VP n Y c: E for every p e E, so that 

G n Y c: E. Thus E = G n Y, and one half of the theorem is proved. 
Conversely, if G is open in X and E = G n Y, every p e E has a 

neighborhood VP c: G. Then VP n Y c: E, so that Eis open relative to Y. 

COMPACT SETS 

2.31 Definition By an open cover of a set E in a metric space X we mean a 
collection {G11} of open subsets of X such that E c: U11 Ga.. 

2.32 Definition A subset K of a metric space X is said to be compact if every 
open cover of K contains a finite subcover. 

More explicitly, the requirement is that if { G11} is an open cover of K, then 
there are finitely many indices oc1, ••• , °'" such that 

Kc:G u···uG «1 IZn " 

The notion of compactness is of great importance in analysis, especially 
in connection with continuity (Chap. 4). 

It is clear that every finite set is compact. The existence of a large class of 
infinite compact sets in Rk will follow from Theorem 2.41. 

We observed earlier (in Sec. 2.29) that if E c: Y c: X, then E may be open 
relative to Y without being open relative to X. The property of being open thus 
depends on the space in which E is embedded. The same is true of the property 
of being closed. 

Compactness, however, behaves better, as we shall now see. To formu
late the next theorem, let us say, temporarily, that K is compact relative to X if 
the requirements of Definition 2.32 are met. 
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2.33 Theorem Suppose K c Y c X. Then K is compact relative to X if and 
only if K is compact relative to Y. 

By virtue of this theorem we are able, in many situations, to regard com
pact sets as metric spaces in their own right, without paying any attention to 
any embedding space. In particular, althot1gh it makes little sense to talk of 
open spaces, or of closed spaces (every metric space Xis an open subset of itself, 
and is a closed subset of itself), it does make sense to talk of compact metric 
spaces. 

(22) 

(23) 

Proof Suppose K is compact relative to X, and let { Va} be a collection 
of sets, open relative to Y, such that Kc U« Va. By theorem 2.30, there 
are sets Ga, open relative to X, such that Va = Y n G «, for all (X; and since 
K is compact relative to X, we have 

for some 
implies 

KC Ga 1 U • · • U G«n 

choice of finitely many indices ct1, ••. , (Xn. Since Kc Y, (22) 

K C Va, U • • • U Van• 

This proves that K is compact relative to Y. 
Conversely, suppose K is compact relative to Y, let { Ga} be a col

lection of open subsets of X which covers K, and put Va = Y n Ga. Then 
(23) will hold for some choice of ct 1, ... , (Xn; and since Va c Ga, (23) 
implies (22). 

This completes the proof. 

2.34 Theorem Compact si,bset.fi of metric spaces are closed. 

Proof Let K be a compact subset of a metric space X. We shall prove 
that the complement of K is an open subset of X. 

Suppose p E X, p ¢ K. If q E K, let Vq and Wq be neighborhoods of p 
and q, respectively, of radius less than }d(p, q) [see Definition 2.18(a)]. 
Since K is compact, there are finitely many points q1, ••. , qn in K such that 

K C wq1 U " " " U Wqn = w. 
If V = Vq

1 
n · · · n Vq", then Vis a neighborhood of p which does not 

intersect W. Hence V c Kc, so that p is an interior point of Kc. The 
theorem follows. 

2.35 Theorem Closed subsets of compact sets are compact. 

Proof Suppose F c Kc X, Fis closed (relative to X), and K is compact. 
Let { Va} be an open cover of F. If pc is adjoined to { Va}, we obtain an 
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open cover n of K. Since K is compact, there is a finite subcollection Cl> 
of n which covers K, and hence F. If pc is a member of Cl>, we may remove 
it from Cl> and still retain an open cover of F. We have thus shown that a 
finite subcollection of { Voi} covers F. 

Corollary If Fis closed and K is compact, then F n K is compact. 

Proof Theorems 2.24(b) and 2.34 show that F n K is closed; since 
F n Kc: K, Theorem 2.35 shows that F n K is compact. 

2.36 Theorem If { Ka} is a collection of compact subsets of a metric space X such 
that the intersection of every finite subcollection of {Ka} is nonempty, then n Ka 
is nonempty. 

Proof Fix a member Ki of {K.} and put G. = K!. Assume that no point 
of K1 belongs to every .K •. Then the sets G. form an open cover of Ki; 
and since Ki is compact, there are finitely many indices (X1 , ••• , (Xn such 
that K1 c: G.1 u · · · u G.n. But this means that 

K 1 n K.1 n · · · n Koin 

is empty, in contradiction to our hypothesis. 

Corollary If {Kn} is a sequence of nonempty compact sets such that Kn => Kn+ 1 

(n = 1, 2, 3 •... ), then ni Kn is not empty. 

2.37 Theorem If E is an infinite subset of a compact set K, then E has a limit 
point in K. 

Proof If no point of K were a limit point of E, then each q e K would 
have a neighborhood Vq which contains at most one point of E (namely, 
q, if q e E). It is clear that no finite subcollection of {Vq} can cover E; 
and the same is true of K, since E c: K. This contradicts the compactness 
of K. 

2.38 Theorem If {In} is a sequence of intervals in R1
, such that In=> In+t 

(n = 1, 2, 3, ... ), then ni In is not empty. 

Proof If In = [an, bn], let E be the set of all an. Then E is nonempty and 
bounded above (by b1). Let x be the sup of E. If m and n are positive 
integers, then 

an ::5: am+n ::5: bm+n ::5:bm, 

so that x ::5: bm for each m. Since it is obvious that am ::5: x, we see that 
x e Im form = l, 2, 3, .... 
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2.39 Theorem Let k be a positive integer. If {In} is a sequence of k-cells such 
that In=> In+ 1(n = I, 2, 3, ... ), then n;_io In is not empty. 

Proof Let In consist of all points x = (x1, •.. , xk) such that 

an,}~ X1 ~ bn,J (I ~j ~ k; n = I, 2, 3, ... ), 

and put In,J = [an,J, bn,1]. For each j, the sequence {In,J} satisfies the 
hypotheses of Theorem 2.38. Hence there are real numbers xj(l ~j ~ k) 
such that 

an,J ~xj ~ bn,J (1 ~j ~ k; n = 1, 2, 3, ... ). 

Setting x* = (x!, ... , xt), we see that x* e In for n = I, 2, 3, . . . . The 
theorem follows. 

2.40 Theorem Every k-cell is compact. 

Proof Let I be a k-cell, consisting of all points x = (x1 , ..• , xk) such 
that a1 ~x1 ~ b1 (1 ~j ~ k). Put 

1/2 

• 

Then I x - y I ~ b, if x e /, y e I. 
Suppose, to get a contradiction, that there exists an open cover {Ga} 

of I which contains no finite subcover of /. Put c1 = (a1 + b1)(2. The 
intervals [a1 , c1] and [c1 , b1] then determine 2k k-cells Qi whose union is I. 
At least one of these sets Qi, call it / 1, cannot be covered by any finite 
subcollection of {Ga} (otherwise I could be so covered). We next subdivide 
I1 and continue the process. We obtain a sequence {In} with the following 
properties: 

(a) I=> 11 => 12 => /3 => · • • ; 

(b) In is not covered by any finite subcollection of {Ga}; 
(c) ifxe/nandye/n, then lx-yl ~2-nb. 

By (a) and Theorem 2.39, there is a point x* which lies in every In. 
For some tx, x* e Ga. Since Ga is open, there exists r > 0 such that 
I y - x* I < r implies that ye Ga. If n is so large that 2-nb < r (there is 
such an n, for otherwise 2n ~ b/r for all positive integers n, which is 
absurd since R is archimedean), then ( c) implies that In c Ga, which con
tradicts (b). 

This completes the proof. 

The equivalence of (a) and (b) in the next theorem is known as the Heine
Borel theorem. 
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2.41 Theorem If a set E in Rk has one of the following three properties, then it 
has the other two: 

(a) Eis closed and bounded. 
(b) Eis compact. 
(c) Every infinite subset of E has a limit point in E. 

Proof If (a) holds, then E c / for some k-cell /, and (b) follows from 
Theorems 2.40 and 2.35. Theorem 2.37 shows that (b) implies (c). It 
remains to be shown that (c) implies (a). 

If E is not bounded, then E contains points Xn with 

(n = 1, 2, 3, ... ). 

The set S consisting of these points xn is infinite and clearly has no limit 
point in Rk, hence has none in E. Thus (c) implies that Eis bounded. 

If E is not closed, then there is a point x 0 e Rk which is a limit point 
of E but not a point of E. For n = 1, 2, 3, ... , there are points xn e E 
such that I xn - x0 I < 1/n. Let S be the set of these points xn. Then Sis 
infinite ( otherwise I xn - x0 I would have a constant positive value, for 
infinitely many n), S has x0 as a limit point, and S has no other limit 
point in Rk. For if ye Rk, y "::/: x0 , then 

I Xn - Y I ~ I Xo - Y I - I Xn - Xo I 
1 1 

~ I Xo - YI - ~ ~ 2 I Xo - Y I 

for all but finitely many n; this shows that y is not a limit point of S 
(Theorem 2.20). 

Thus S has no limit point in E; hence E must be closed if (c) holds. 

We should remark, at this point, that (b) and (c) are equivalent in any 
metric space (Exercise 26) but that (a) does not, in general, imply (b) and (c). 
Examples are furnished by Exercise 16 and by the space !t'2

, which is dis
cussed in Chap. 11. 

2.42 Theorem (Weierstrass) Every bounded infinite subset of Rk has a limit 
point in Rk. 

Proof Being bounded, the set E in question is a subset of a k-cell / c Rk. 
By Theorem 2.40, / is compact, and so E has a limit point in I, by 
Theorem 2.37. 
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PERFECT SETS 

2.43 Theorem Let P be a nonempty perfect set in Rk. Then Pis uncountable. 

Proof Since P has limit points, P must be infinite. Suppose P is count
able, and denote the points of P by x1, x2 , x3 , .•.. We shall construct a 
sequence { Vn} of neighborhoods, as follows. 

Let V1 be any neighborhood of x 1 • If V1 consists of all y e Rk such 
that I y - x1 I < r, the closure V1 of V1 is the set of all ye Rk such that 

IY-X1I ~r. 
Suppose Vn has been constructed, so that Vn n Pis not empty. Since 

every point of Pis a limit point of P, there is a neighborhood Vn+i such 
that (i) Yn + 1 C: vn , ( ii) Xn ¢ Yn + 1, (iii) Vn + 1 n p is not empty. By (iii), 
Vn+i satisfies our induction hypothesis, and the construction can proceed. 

Put Kn = Yn n P. Since Yn is closed and bounded, Yn is compact. 
Since Xn ¢ Kn+l, no point of plies in n'? Kn. Since Kn C: P, this implies 
that nf Kn is empty. But each Kn is nonempty, by (iii), and Kn=> Kn+t, 
by (i); this contradicts the Corollary to Theorem 2.36. 

Corollary Every interval [a, b] (a < b) is uncountable. In particular, the set of 
all real numbers is uncountable. 

2.44 The Cantor set The set which we are now going to construct shows 
that there exist perfect sets in R 1 which contain no segment. 

Let E0 be the interval [O, l]. Remove the segment (½, f), and let E1 be 
the union of the intervals 

[O, t] [t, 1 ]. 

Remove the middle thirds of these intervals, and let E2 be the union of the 
intervals 

[0, ½], [¾, ¾], [t, ¾], [!, 1]. 

Continuing in this way, we obtain a sequence of compact sets En, such that 

(a) E1 => E2 => E3 => ••• ; 
(b) En is the union of 2n intervals, each of length 3-n. 

The set 

00 

P= n En 
n= 1 

is called the Cantor set. Pis clearly compact, and Theorem 2.36 shows that P 
is not empty. 
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No segment of the form 

(24) ' 

where k and m are positive integers, has a point in common with P. Since every 
segment (ix, /3) contains a segment of the form (24), if 

P contains no segment. 

3
-m f3 - IX 

< 6 ' 

To show that Pis perfect, it is enough to show that P contains no isolated 
point. Let x e P, and let S be any segment containing x. Let In be that interval 
of En which contains x. Choose n large enough, so that In c S. Let Xn be an 
endpoint of In, such that Xn :#: x. 

It follows from the construction of P that Xn e P. Hence xis a limit point 
of P, and P is perfect. 

One of the most interesting properties of the Cantor set is that it provides 
us with an example of an uncountable set of measure zero (the concept of 
measure will be discussed in Chap. 11). 

CONNECTED SETS 

2.45 Definition Two subsets A and B of a metric space X are said to be 
separated if both A n Band An Bare empty, i.e., if no point of A lies in the 
closure of Band no point of B lies in the closure of A. 

A set E c X is said to be connected if E is not a union of two nonempty 
separated sets. 

2.46 Remark Separated sets are of course disjoint, but disjoint sets need not 
be separated. For example, the interval [O, 1] and the segment (1, 2) are not 
separated, since 1 is a limit point of (1, 2). However, the segments (0, 1) and 
(1, 2) are separated. 

The connected subsets of the line have a particularly simple structure: 

2.47 Theorem A subset E of the real line R1 is connected if and only if it has the 
following property: If x e £,ye£, and x < z < y, then z e £. 

I 

Proof If there exist x e £,ye£, and some z e (x, y) such that z ¢ E, then 
E = A:z u B:z where 

A:z =En (-oo, z), B:z =En (z, oo). 
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Since x e Az and ye Bz, A and Bare nonempty. Since Az c: (- oo, z) and 
Bz c: (z, oo ), they are separated. Hence E is not connected. 

To prove the converse, suppose Eis not connected. Then there are 
nonempty separated sets A and B such that A u B = E. Pick x e A, y e B, 
and assume (without loss of generality) that x < y. Define 

z = sup (A n [x, y]). 

By Theorem 2.28, z e A; hence z ¢ B. In particular, x ~ z < y. 
If z ¢ A, it follows that x < z < y and z ¢ E. 
If z e A, then z ¢ B, hence there exists z1 such that z < z1 < y and 

z1 ¢ B. Then x < z1 < y and z1 ¢ E. 

EXERCISES 

1. Prove that the empty set is a subset of every set. 
2. A complex number z is said to be algebraic if there are integers ao, ... , an, not all 

zero, such that 

ao z" + a1zn-l + ''' + an-1Z + an = 0. 

Prove that the set of all algebraic numbers is countable. Hint: For every positive 
integer N there are only finitely many equations with 

n+ laol + la1I + ···+ lanl =N. 
3. Prove that there exist real numbers which are not algebraic. 
4. Is the set of all irrational real numbers countable? 
S. Construct a bounded set of real numbers with exactly three limit points. 
6. Let E' be the set of all limit points of a set E. Prove that E' is closed. Prove that 

E and E have the same limit points. (Recall that E = Eu E'.) Do E and E' always 
have the same limit points? 

7. Let A1, A2, A3, ... be subsets of a metric space. 
(a) If Bn = Ur .. 1 A,, prove that Bn = Ur .. 1 A,, for n = 1, 2, 3, .... 
(b) If B = U? .. 1 A,, prove that .ii~ U? .. 1 A,. 
Show, by an example, that this inclusion can be proper. 

8. Is every point of every open set E c R2 a limit point of E? Answer the same 
question for closed sets in R2

• 

9. Let £ 0 denote the set of all interior points of a set E. [See Definition 2.18(e); 
E 0 is called the interior of£.] 
(a) Prove that £ 0 is always open. 
(b) Prove that Eis open if and only if E 0 = E. 
(c) If G c E and G is open, prove that G c £ 0

• 

(d) Prove that the complement of E 0 is the closure of the complement of E. 
(e) Do E and E always have the same interiors? 
(/) Do E and E 0 always have the same closures? 
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10. Let X be an infinite set. For p e X and q e X, define 

1 
d(p,q) = 0 

(if p ¢ q) 

(if p = q). 

Prove that this is a metric. Which subsets of the resulting metric space are open? 
Which are closed? Which are compact? 

11. For x e R1 and ye R1
, define 

d1(x, y) = (x - y) 2, 

d2(X, y) = VIX - YI, 
d3(X, y) = I x2 

- y 2 I, 
d4(X, y) = Ix - 2yj, 

lx-yl 
ds(x, y) = 1 + Ix - y I . 

Determine. for each of these, whether it is a metric or not. 
12. Let Kc. R1 consist of O and the numbers 1/n, for n = 1, 2, 3, .... Prove that K is 

compact directly from the definition (without using the Heine-Borel theorem). 
13. Construct a compact set of real numbers whose limit points form a countable set. 
14. Give an example of an open cover of the segment (0, 1) which has no finite sub

cover. 
15. Show that Theorem 2.36 and its Corollary become false (in R1, for example) if the 

word ''compact'' is replaced by ''closed'' or by ''bounded." 
16. Regard Q, the set of alt rational numbers, as a metric space, with d(p, q) = Ip - q I, 

Let E be the set of all p e Q such that 2 < p 2 < 3. Show that E is closed and 
bounded in Q, but that Eis not compact. Is E open in Q? 

17. Let Ebe the set of all x e [O, 1] whose decimal expansion contains only the digits 
4 and 7. Is E countable? Is E dense in [0, 1]? Is E compact? Is E perfect? 

18. Is there a nonempty perfect set in R1 which contains no rational number? 
19. (a) If A and B are disjoint closed sets in some metric space X, prove that they 

are separated. 
(b) Prove the same for disjoint open sets. 
(c) Fix p e X, S > 0, define A to be the set of all q e X for which d(p, q) < S, define 
B similarly, with > in place of <. Prove that A and Bare separated. 
(d) Prove that every connected metric space with at least two points is uncount
able. Hint: Use (c). 

20. Are closures and interiors of connected sets always connected? (Look at subsets 
of R2

.) 

21. Let A and B be separated subsets of some Rt, suppose a e A, be B, and define 

p(t) = (1 - t)a + tb 

forte R 1
• Put Ao= p- 1(A), Bo= p- 1(B). [Thus t e Ao if and only if p(t) e A.] 



(a) Prove that Ao and Bo are separated subsets of R1
• 

(b) Prove that there exists to E (0, 1) such that p(to) <t A u B. 
(c) Prove that every convex subset of Rk is connected. 
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22. A metric space is called separable if it contains a countable dense subset. Show 
that Rk is separable. Hint: Consider the set of points which have only rational 

coordinates. 

23. A collection { Va} of open subsets of X is said to be a base for X if the following 
is true: For every x e X and every open set G c X such that x E G, we have 
x e Va c G for some oc. In other words, every open set in X is the union of a 

subcollection of { Va}, 
Prove that every separable metric space has a countable base. Hint: Take 

all neighborhoods with rational radius and center in some countable dense subset 

of X. 

24. Let X be a metric space in which every infinite subset has a limit point. Prove that 
Xis separable. Hint: Fix S > 0, and pick X1 EX. Having chosen x1, ••• , x 1 EX, 
choose x1 + 1 EX, if possible, so that d(x,, x1+1)> S for i = 1, ... ,j. Show that 
this process must stop after a finite number of steps, and that X can therefore be 
covered by finitely many neighborhoods of radius S. Take S = 1/n (n = 1, 2, 3, ... ), 
and consider the centers of the corresponding neighborhoods. 

25. Prove that every compact metric space K has a countable base, and that K is 
therefore separable. Hint: For every positive integer n, there are finitely many 
neighborhoods of radius 1/n whose union covers K. 

26. Let X be a metric space in which every infinite subset has a limit point. Prove 
that Xis compact. Hint: By Exercises 23 and 24, X has a countable base. It 
follows that every open cover of X has a countable subcover {Gn}, n = l, 2, 3, .... 
If no finite subcollection of {Gn} covers X, then the complement Fn of G1 u · · · u Gn 
is nonempty for each n, but n Fn is empty. If Eis a set which contains a point 
from each Fn, consider a limit point of E, and obtain a contradiction. 

27. Define a point p in a metric space X to be a condensation point of a set E c X if 
every neighborhood of p contains uncountably many points of E. 

Suppose E c Rk, E is uncountable, and let P be the set of all condensation 
points of E. Prove that P is perfect and that at most countably many points of E 
are not in P. In other words, show that pc 11 Eis at most countable. Hint: Let 
{Vn} be a countable base of Rk, let W be the union of those Vn for which E 11 Vn 
is at most countable, and show that P = we. 

28. Prove that every closed set in a separable metric space is the union of a (possibly 
empty) perfect set and a set which is at most countable. (Corollary: Every count
able closed set in Rk has isolated points.) Hint: Use Exercise 27. 

29. Prove that every open set in R 1 is the union of an at most countable collection of 
disjoint segments. Hint: Use Exercise 22. 
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30. Imitate the proof of Theorem 2.43 to obtain the following result: 

If Rk = U f Fn, where each Fn is a closed subset of Rk, then at least one Fn 
has a nonempty interior. 

Equivalent statement: If Gn is a dense open subset of Rk, for n = 1, 2, 3, ... , 
then nron is not empty (in fact, it is dense in R"). 

(This is a special case of Baire's theorem; see Exercise 22, Chap. 3, for the general 
case.) 



NUMERICAL SEQUENCES AND SERIES 

As the title indicates, this chapter will deal primarily with sequences and series 
of complex numbers. The basic facts about convergence, however, are just as 
easily explained in a more general setting. The first three sections will the ref ore 
be concerned with sequences in euclidean spaces, or even in metric spaces. 

CONVERGENT SEQUENCES 

3.1 Definition A sequence {Pn} in a metric space Xis said to converge if there 
is a point p e X with the following property: For every B > 0 there is an integer 
N such that n ~ N implies that d(pn, p) < e. (Here d denotes the distance in X.) 

In this case we also say that {Pn} converges to p, or that p is the limit of 
{Pn} [see Theorem 3.2(b)], and we write Pn ➔ p, or 

lim Pn = p. 
n➔ oo 

If {Pn} does not converge, it is said to diverge. 
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It might be well to point out that our definition of ''convergent sequence'' 
depends not only on {Pn} but also on X; for instance, the sequence {1/n} con
verges in R 1 (to 0), but fails to converge in the set of all positive real numbers 
[with d(x, y) = Ix - y I]. In cases of possible ambiguity, we can be more 
precise and specify ''convergent in X'' rather than ''convergent." 

We recall that the set of all points Pn (n = 1, 2, 3, ... ) is the range of {Pn}. 
The range of a sequence may be a finite set, or it may be infinite. The sequence 
{p n} is said to be bounded if its range is bounded. 

As examples, consider the following sequences of complex numbers 
(that is, X = R2

): 

(a) If sn = 1/n, then limn-+oo sn = O; the range is infinite, and the sequence 
is bounded. 

(b) If sn = n2
, the sequence {sn} is unbounded, is divergent, and has 

infinite range. 
(c) If sn = 1 + [( - l)n/n], the sequence {sn} converges to I, is bounded, 

and has infinite range. 
(d) If sn = in, the sequence {sn} is divergent, is bounded, and has finite 

range. 
(e) If sn = 1 (n = 1, 2, 3, ... ), then {sn} converges to 1, is bounded, and 

• 

has finite range. 

We now summarize some important properties of convergent sequences 
in metric spaces. 

3.2 Theorem Let {p n} be a sequence in a metric space X. 

(a) {Pn} converges to p e X if and only if every neighborhood o.f p contains 
Pn for all but finitely many n. 

(b) If p e X, p' e X, and if {Pn} converges top and top', then p' = p. 
(c) If {Pn} converges, then {Pn} is bounded. 
(d) If E c X and if p is a limit point of E, then there is a sequence {Pn} in E 

such that p = lim Pn . 
n-+ oo 

Proof (a) Suppose Pn ➔ p and let V be a neighborhood of p. For 
some e > 0, the conditions d(q, p) < e, q e X imply q e V. Correspond
ing to this e, there exists N such that n ~ N implies d(p n, p) < e. Thus 
n ~ N implies Pn E V. 

Conversely, suppose every neighborhood of p contains all but 
finitely many of the Pn. Fix e > 0, and let V be the set of all q e X such 
that d(p, q) < e. By assumption, there exists N (corresponding to this V) 
such that Pn E V if n ~ N. Thus d(pn, p) < e if n ~ N; hence Pn > p. 
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(b) Let e > 0 be given. There exist integers N, N' such that 

n~N implies 

n ~ N' implies 

Hence if n ~ max (N, N'), we have 

d(p, p') ~ d(p, Pn) + d(pn, p') < e. 

Since e was arbitrary, we conclude that d(p, p') = 0. 
(c) Suppose Pn • p. There is an integer N such that n > N 

implies d(pn, p) < 1. Put 

r = max {l, d(p1, p), ... , d(pN, p)}. 

Then d(pn,P) ~ r for n = 1, 2, 3, .... 
(d) For each positive integer n, there is a point Pn e E such that 

d(pn, p) < 1/n. Given e > 0, choose N so that Ne> 1. If n > N, it 
follows that d(pn, p) < e. Hence Pn > p. 

This completes the proof. 

For sequences in Rk we can study the relation between convergence, on 
the one hand, and the algebraic operations on the other. We first consider 
sequences of complex numbers. 

3.3 Theorem Suppose {sn}, {tn} are complex sequences, and limn➔ oo Sn = s, 
limn➔ 00 tn = t. Then 

(a) lim (sn + tn) = s + t; 
n➔ oo 

(b) lim csn = cs, lim ( c + sn) = c + s, for any number c; 
n➔ oo n ➔ oo 

(c) lim Sntn = st; 
n➔ oo 

(d) 
. 1 1 . 

l1m - = - , provided sn =I= 0 (n = 1, 2, 3, ... ), and s =I= 0. 
n➔ oo Sn S 

Proof 

(a) Given e > 0, there exist integers N 1 , N 2 such that 

n ~ N 1 implies 

n ~ N 2 implies 

• 
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(1) 

If N = max (N1, N 2), then n ~ N implies 

I (sn + tn) - (s + t) I ~ I Sn - SI + I tn - t I < B. 

This proves (a). The proof of (b) is trivial. 

(c) We use the identity 

Sntn - st = (sn - s)(tn - t) + s(tn - t) + t(sn - s). 

Given e > 0, there are integers N1 , N 2 such that 

n ~ N 1 implies lsn - sl < J;, 
n ~ N 2 implies I tn - ti < J;. 

If we take N = max (N1, N 2), n ~ N implies 

I (sn - s)(tn - t)I < B, 

so that 

lim (sn - s)(tn - t) = 0. 
n➔ oo 

We now apply (a) and (b) to (1), and conclude that 

lim (sntn - st)= 0. 
n➔ oo 

(d) Choosing m such that I sn - s I < ½Is I if n ~ m, we see that 

(n ~ m). 

Given e > 0, there is an integer N > m such that n ~ N implies 

I Sn - SI < ! IS I 2 
B. 

Hence, for n ~ N, 

1 1 
--- = 

s - s n 2 
< IS I 2 \ Sn - SI < B. 

3.4 Theorem 

(a) Suppose Xn e Rk (n = 1, 2, 3, ... ) and 

Then { xn} converges to x = ( cc1 , •.• , eek) if and only if 
(2) lim IX1,n = (1.J (1 ~j ~ k). 

n➔ oo 
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(b) Suppose {x,,}, {Yn} are sequences in Rk, {Pn} is a sequence of real numbers, 
and Xn ➔ x, Yn > y, Pn ➔ p. Then 

lim (Xn + Yn) = X + Y, lim Xn • Yn = X. y, lim Pn Xn = f3x. 
n➔ oo n➔ oo n➔ oo 

Proof 

(a) If Xn ➔ x, the inequalities 

l°'J,n -· °'JI S lxn - xi, 
which follow immediately from the definition of the norm in Rk, show that 
(2) holds. 

Conversely, if (2) holds, then to each e > 0 there corresponds an 
integer N such that n ~ N implies 

(1 Sj S k). 

Hence n ~ N implies 

k 1/2 

lxn - xi = L l°'J,n - °'11 2 < B, 
J=l 

so that Xn > x. This proves (a). 
Part (b) follows from (a) and Theorem 3.3. 

SUBSEQUENCES 

3.S Definition Given a sequence {pn}, consider a sequence {nk} of positive 
integers, such that n1 < n2 < n3 < · · · . Then the sequence {Pn,} is called a 
subsequence of {Pn}. If {Pn,} converges, its limit is called a subsequential limit 
of {Pn}. 

It is clear that {Pn} converges to p if and only if every subsequence of 
{Pn} converges top. We leave the details of the proof to the reader. 

3.6 Theorem 

(a) If {Pn} is a sequence in a compact metric space X, then some sub
sequence of {Pn} converges to a point of X. 

(b) Every bounded sequence in Rk contains a convergent subsequence. 
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Proof 

(a) Let Ebe the range of {Pn}. If Eis finite then there is ape E and a 
sequence {n1} with n1 < n2 < n3 < · · ·, such that 

P -p -···-p n, - na - - • 

The subsequence {Pn1} so obtained converges evidently to p. 
If E is infinite, Theorem 2.37 shows that E has a limit point p e X. 

Choose n1 so that d(P,Pn 1) < 1. Having chosen n1, ••• , n1_ 1, we see from 
Theorem 2.20 that there is an integer n1 > n1_ 1 such that d(P,Pn,) < 1/i. 
Then {Pn,} converges top. 

(b) This follows from (a), since Theorem 2.41 implies that every bounded 
subset of Rk lies in a compact subset of Rk. 

3.7 Theorem The subsequential limits of a sequence {Pn} in a metric space X 
form a closed subset of X. 

Proof Let E* be the set of all subsequential limits of {Pn} and let q be a 
limit point of E*. We have to show that q e E*. 

Choose n1 so that Pn 1 =I= q. (If no such n1 exists, then E* has only 
one point, and there is nothing to prove.) Put ~ = d(q, Pn

1
). Suppose 

n1, ••• , n1_ 1 are chosen. Since q is a limit point of E*, there is an x e E* 
with d(x, q) < 2- 1

~. Since x e E*, there is an n1 > n1_ 1 such that 
d(x,Pn,) < 2- 1

~. Thus 

d(q, Pn,) ~ 21-1~ 

for i = 1, 2, 3, . . . . This says that {Pn,} converges to q. Hence q e E*. 

CAUCHY SEQUENCES 

3.8 Definition A sequence {pn} in a metric space X is said to be a Cauchy 
sequence if for every s > 0 there is an integer N such that d(pn , Pm) < e if n ~ N 
and m ~N. 

In our discussion of Cauchy sequences, as well as in other situations 
which will arise later, the following geometric concept will be useful. 

3.9 Definition Let E be a nonempty subset of a metric space X, and let S be 
- - -

the set of all real numbers of the form 
1

d(p, q), with .p e E and q e E. The sup 
of S is called the diameter of E. 
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If{pn} is a sequence in X and if EN consists of the points PN, PN+ 1,PN+ 2 , ••• , 

it is clear from the two preceding definitions that {Pn} is a Cauc/1y sequence 

if and only if 
lim diam EN= 0. 

N-+oo 

3.10 Theorem 

(a) If E is the closure of a set E in a metric space X, then 

diam E = diam E. 

(b) If Kn is a sequence of compact sets in X such that Kn::::, Kn+i 
(n = 1, 2, 3, ... ) and if 

lim diam Kn= 0, 
n ➔ oo 

then n '? Kn consists of exactly one point. 

Proof 

(a) Since E c E, it is clear that 

diam E::; diam E. 

Fix a > 0, and choose p E E, q E £. By the definition of E, there are 
points p', q', in E such that d(p, p') < s, d(q, q') < B. Hence 

d(p, q) ::; d(p, p') + d(p' q') + d(q', q) 

< 2s + d(p', q') ~ 2s -+ diam E. 

It follows that 
diam E ~ 2s + diam E, 

and since e was arbitrary, (a) is proved. 
(b) Put K = n '?Kn. By Theorem 2.36, K is not empty. If K contains 
more than one point, then diam K > 0. But for each n, Kn ::::, K, so that 
diam Kn ~ diam K. This contradicts the assumption that diam Kn ---+ 0. 

3.11 Theorem 

(a) In any metric space X, every convergent sequence is a Cauchy sequence. 
(b) If Xis a compact metric space and if {Pn} is a Cauchy sequence in X, 

then {pn} converges to some point of X. 
(c) In Rk, every Cauchy sequence converges. 

Note: The difference between the definition of convergence and 
the definition of a Cauchy sequence is that the limit is explicitly involved 
in the former, but not in the latter. Thus Theorem 3.11 (b) may enable us 
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(3) 

to decide whether or not a given sequence converges without knowledge 
of the limit to which it may converge. 

The fact (contained in Theorem 3.11) that a sequence converges in 
Rk if and only if it is a Cauchy sequence is usually called the Cauchy 
criterion for convergence. 

Proof 

(a) If Pn ➔ p and if e > 0, there is an integer N such that d(p, Pn) < e 
for all n ~ N. Hence 

d(pn, p,,.) ~ d(pn, p) + d(p, Pm) < 2B 

as soon as n ~ N and m ~ N. Thus {pn} is a Cauchy sequence. 

(b) Let {Pn} be a Cauchy sequence in the compact space X. For 
N = 1, 2, 3, ... , let EN be the set consisting of PN, PN+t, PN+2, ... . 
Then 

lim diam EN= 0, 
N➔ oo 

by Definition 3.9 and Theorem 3. lO(a). Being a closed subset of the 
compact space X, each EN is compact (Theorem 2.35). Also EN:::> EN+i, 

so that EN=> EN+1• 
Theorem 3.lO(b) shows now that there is a unique p EX which lies 

in every EN. 
Let e > 0 be given. By (3) there is an integer NO such that 

diam EN < e if N ~ N 0 • Since p E EN, it follows that d(p, q) < B for 
every q E EN, hence for every q E EN. In other words, d(p, Pn) < e if 
n ~ NO • This says precisely that Pn • p. 

(c) Let {xn} be a Cauchy sequence in Rk. Define EN as in (b), with x, 
in place of Pi. For some N, diam EN< 1. The range of {xn} is the union 
of EN and the finite set {x1, ... , xN- 1}. Hence {xn} is bounded. Since 
every bounded subset of Rk has compact closure in Rk (Theorem 2.41), 
(c) follows from (b). 

3.12 Definition A metric space in which every Cauchy sequence converges is 
said to be complete. 

Thus Theorem 3.11 says that all compact metric spaces and all Euclidean 
spaces are complete. Theorem 3.11 implies also that every closed subset E of· a 
complete metric space Xis complete. (Every Cauchy sequence in Eis a Cauchy 
sequence in X, hence it converges to some p EX, and actually p e E since Eis 
closed.) An example of a metric space which is not complete is the space of all 
rational numbers, with d(x, y) = Ix - YI. 
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Theorem 3.2(c) and example (d) of Definition 3.1 show that convergent 
sequences are bounded, but that bounded sequences in Rk need not converge. 
However, there is one important case in which convergence is equivalent to 
boundedness; this happens for monotonic sequences in R1

• 

3.13 Definition A sequence {sn} of real numbers is said to be 

(a) monotonically increasing if Sn~ Sn+l (n = 1, 2, 3, ... ); 
(b) monotonically decreasing if Sn~ Sn+i (n = 1, 2, 3, ... ). 

The class of monotonic sequences consists of the increasing and the 
decreasing sequences. 

3.14 Theorem Suppose {sn} is monotonic. Then {sn} converges if and only if it 
is bounded. 

Proof Suppose Sn~ Sn+i (the proof is analogous in the other case). 
Let E be the range of {sn}. If {sn} is bounded, let s be the least upper 
bound of E. Then 

(n = 1, 2, 3, ... ). 

For every B > 0, there is an integer N such that 

for otherwise s - s would be an upper bound of E. Since {sn} increases, 
n ~ N the ref ore implies 

s - e <Sn~ s, 

which shows that {sn} converges (to s). 
The converse follows from Theorem 3.2(c). 

UPPER AND LOWER LIMITS 

3.15 Definition Let {sn} be a sequence of real numbers with the following 
property: For every real 1\1 there is an integer N such that n ~ N implies 
sn ~ M. We then write 

Sn ➔ +OO. 

Similarly, if for every real M there is an integer N such that n ~ N implies 
sn ~ M, we write 

Sn ► - 00. 
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It should be noted that we now use the symbol ➔ (introduced in Defini
tion 3.1) for certain types of divergent sequences, as well as for convergent 
sequences, but that the definitions of convergence and of limit, given in Defini
tion 3.1, are in no way changed. 

3.16 Definition Let {sn} be a sequence of real numbers. Let Ebe the set of 
numbers x (in the extended real number system) such that sn,. ) x for some 
subsequence {j'n,.}. This set E contains all subsequential limits as defined in 
Definition 3.5, plus possibly the numbers + oo, - oo. 

We now recall Definitions 1.8 and 1.23 and put 

s* = sup E, 

s* = inf E. 

The numbers s*, s* are called the upper and lower limits of {sn}; we use the 
notation 

lim sup Sn= s*, lim inf Sn = s*. 
n➔ oo ft ➔ 00 

3.17 Theorem Let {sn} be a sequence of real numbers. Let E ands* have the 
same meaning as in Definition 3.16. Thens* has the following two properties: 

(a) s* e E. 
(b) If x > s*, there is an integer N such that n ~ N implies Sn < x. 

Moreover, s* is the only number with the properties (a) and (b). 

Of course, an analogous result is true for s*. 

Proof 

(a) Ifs* = + oo, then Eis not bounded above; hence {sn} is not bounded 
above, and there is a subsequence {sn,.} such that sn,. ) + oo. 

Ifs* is real, then Eis bounded above, and at least one subsequential 
limit exists, so that (a) follows from Theorems 3.7 and 2.28. 

If s* = - oo, then E contains only one element, namely - oo, and 
there is no subsequential limit. Hence, for any real M, Sn > M for at 
most a finite number of values of n, so that sn ) - oo. 

This establishes (a) in all cases. 
(b) Suppose there is a number x > s* such that Sn ~ x for infinitely 
many values of n. In that case, there is a number ye E such that 
y ~ x > s*, contradicting the definition of s*. 

Thuss* satisfies (a) and (b). 
To show the uniqueness, suppose there are two numbers, p and q, 

which satisfy (a) and (b), and suppose p < q. Choose x such thatp < x < q. 
Since p satisfies (b), we have sn < x for n ~ N. But then q cannot satisfy (a). 



NUMERICAL SEQUENCES AND SERIES 57 

3.18 · Examples 

(a) Let {sn} be a sequence containing all rationals. Then every real 
number is a subsequential limit, and 

lim sup Sn= + 00, 
ft ➔ OO 

(b) Let s,1 = ( - 1 ") /[1 + (1/n)]. Then 

lim sup Sn= 1, 
n➔ oo 

lim inf Sn= - oo. 
ft ➔ OO 

lim inf Sn = - 1. 
ft ➔ OO 

(c) For a real-valued sequence {sn}, lim sn = s if and only if 

lim sup Sn= lim inf Sn= s. 
ft ➔ 00 ft ➔ 00 

We close this section with a theorem which is useful, and whose proof is 
quite trivial: 

3.19 Theorem If Sn ~ tn for n ~ N, where N is fixed, then 

lim inf Sn ~ lim inf tn, 

lim sup Sn ~ lim sup tn. 
ft ➔ 00 ft➔ 00 

SOME SPECIAL SEQUENCES 

We shall now compute the limits of some sequences which occur frequently. 
The proofs will all be based on the following remark: If O ~ Xn ~ sn for n ~ N, 
where N is some fixed number, and if Sn ➔ 0, then Xn ➔ 0. 

3.20 Theorem 

(a) If p > 0, then lim 
1
P = 0. 

n ... oo n 

(b) If p > 0, then lim iP = 1. 

(c) lim in= 1. 
ft ➔ OO 

n« 
(d) If p > 0 and~ is real, then lim (l )" = 0. 

ft ➔ OO + P 

(e) If lxl < 1, then lim x" = 0. 
ft ➔ OO 
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Proof 

(a) Take n > (1/s)11
P. (Note that the archimedean property of the real 

number system is used here.) 
(b) If p > 1, put Xn = ::jp - 1. Then Xn > 0, and, by the binomial 
theorem, 

so that 

p-1 
0 <Xn ~--• 

n 

Hence xn ➔ 0. If p = 1, (b) is trivial, and if O < p < 1, the result is obtained 
by taking reciprocals. 
(c) Put xn = ::/; - 1. Then Xn ~ 0, and, by the binomial theorem, 

Hence 

nn-1 

2 
n-1 

(n ~ 2). 

(d) Let k be an integer such that k > ex, k > 0. For n > 2k, 

( l )" (n) k _ n(n - 1) · · · (n - k + 1) k nkpk. 
+ P > k P - k ! P > 2kk ! 

Hence 

na. 2kk ! 
Q < (} + p )" < pk na. - k (n > 2k). 

Since ex - k < 0, na.-k ) 0, by (a). 
(e) Take ex = 0 in (d). 

SERIES 

In the remainder of this chapter, all sequences and series under consideration 
will be complex-valued, unless the contrary is explicitly stated. Extensions of 
some of the theorems which follow, to series with terms in Rk, are mentioned 
in Exercise 15. 
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3.21 Definition Given a sequence {an}, we use the notation 

n=p 

to denote the sum aP + ap+l + · · · + aq. With {an} we associate a sequence 
{sn}, where 

For {sn} we also use the symbolic expression 

a1 + a2 + a3 + ... 
or, more concisely, 

00 

(4) Lan. 
n=l 

The symbol (4) we call an in.finite series, or just a series. The numbers 
Sn are called the partial sums of the series. If {sn} converges to s, we say that 
the series converges, and write 

00 

Lan= s. 
n= 1 

The number s is called the sum of the series; but it should be clearly under
stood that s is the limit of a sequence of sums, and is not obtained simply by 
addition. 

If {sn} diverges, the series is said to diverge. 
Sometimes, for convenience of notation, we shall consider series of the 

form 
00 

(5) Lan. 
n=O 

And frequently, when there is no possible ambiguity, or when the distinction 
is immaterial, we shall simply write :I:an in place of (4) or (5). 

It is clear that every theorem about sequences can be stated in terms of 
series (putting a1 = s1 , and an = Sn - Sn - i for n > 1 ), and vice versa. But it is 
nevertheless useful to consider both concepts. 

The Cauchy criterion (Theorem 3.11) can be restated in the following 
form: 

3.22 Theorem :I:an converges if and only if for every B > 0 there is an integer 
N such that 

(6) 

if m ~ n ~ N. 
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In particular, by taking m = n, (6) becomes 

I an I ~ B (n ~ N). 

In other words: 

3.23 Theorem lf :I:an converges, then limn➔ oo an = 0. 

The condition an ➔ 0 is not, however, sufficient to ensure convergence 
of :I:an. For instance, the series 

CX) 1 
I -

n= 1 n 

diverges; for the proof we refer to Theorem 3.28. 

Theorem 3.14, concerning monotonic sequences, also has an immediate 
counterpart for series. 

3.24 Theorem A series of nonnegative1 terms converges if and only if its 
partial sums form a bounded sequence. 

We now tum to a convergence test of a different nature, the so-called 
''comparison test." 

3.25 Theorem 

(a) If I an I ~ Cn for n ~ N 0 , where N 0 is some fixed integer, and if :I:cn 
converges, then :I:an converges. 
(b) If an~ dn ~ 0 for n ~ N 0 , and 1f :I:dn diverges, then :I:an diverges. 

Note that (b) applies only to series of nonnegative terms an. 

Proof Given e > 0, there exists N ~ N0 such that m ~ n ~ N implies 

by the Cauchy criterion. Hence 
m m 

~ L I ak I ~ L ck ~ B, 
k=n k=n 

and (a) follows. 
Next, (b) follows from (a), for if :I:an converges, so must :I:dn [note 

that (b) also follows from Theorem 3.24]. 

1 The expression ''nonnegative'' always refers to real numbers. 
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The comparison test is a very useful one; to use it efficiently, we have to 
become familiar with a number of series of nonnegative terms whose conver
gence or divergence is known. 

SERIES OF NONNEGATIVE TERMS 

The simplest of all is perhaps the geometric series. 

3.26 Theorem If O ~ x < 1, then 

CX) 1 
Ix"=-· 

n=O 1 - X 

If x ~ 1, the series diverges. 

Proof If x -::f:. 1, 

1 - Xn+l 
Xk=---• 

1-x 

The result follows if we let n ---+ oo. For x = 1, we get 

1+1+1+···, 

which evidently diverges. 

In many cases which occur in applications, the terms of the series decrease 
monotonically. The following theorem of Cauchy is therefore of particular 
interest. The striking feature of the theorem is that a rather ''thin'' subsequence 
of {an} determines the convergence or divergence of l:a". 

3.27 Theorem Suppose a1 ~ a2 ~ a3 ~ · · · ~ 0. Then the series I:= 1 an con
verges if and only if the series 

(7) 
CX) 

L 2ka2 ,. = a1 + 2a2 + 4a4 + 8a8 + · · · 
k=O 

converges. 

Proof By Theorem 3.24, it suffices to consider boundedness of the 
partial sums. Let 

Sn = 01 + 02 + ... + an' 

tk = a1 + 2a2 + · · · + 2ka2 ,.. 
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(8) 

(9) 

3.28 

so that 

Sn~ a1 + (a2 + a 3) + · · · + (a2 k + · · · + a2k+1- 1) 

~ a1 + 2a2 + · · · + 2ka2k 

On the other hand, if n > 2k, 

so that 

Sn ~ a1 + a2 + (a3 + a4 ) + · · · + (a2k- 1 + 1 + · · · + a2k) 

~ ½a1 + a2 + 2a4 + · · · + 2k- 1a2k 

= ½tk, 

2Sn ~ fk. 

By (8) and (9), the sequences {sn} and {tk} are either both bounded 
or both unbounded. This completes the proof. 

I 
Theorem I - converges if p > 1 and diverges if p ~ 1. nP 

Proof If p ~ 0, divergence follows from Theorem 3.23. If p > 0, 
Theorem 3.27 is applicable, and we are led to the series 

C() 1 C() '°' 2k. __ '°' 2(1-p)k 
L.., 2kp - L.., . 

k=O k=O 

Now, 21
-p < 1 if and only if 1 - p < 0, and the result follows by com

parison with the geometric series (take x = 21
- P in Theorem 3.26). 

As a further application of Theorem 3.27, we prove: 

3.29 Theorem If p > 1, 

C() 1 

n~2 n(lo 

converges,· if p ~ 1, the series diverges. 

(10) 

Remark ''log n'' denotes the logarithm of n to the base e (compare Exercise 7, 
Chap. 1); the number e will be defined in a moment (see Definition 3.30). We 
let the series start with n = 2, since log 1 = 0. 
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(12) 

NUMERICAL SEQUENCES AND SERIES 63 

Proof The monotonicity of the logarithmic function (which will be 
discussed in more detail in Chap. 8) implies that {log n} increases. Hence 
{1/n log n} decreases, and we can apply Theorem 3.27 to (10); this 
leads us to the series 

00 1 00 1 1 00 1 
L2k. ___ z:-----z:-

k= 1 2k(log 2k)P - k= 1 (k log 2)P - (log 2)P k= 1 kP' 

and Theorem 3.29 follows from Theorem 3.28. 

This procedure may evidently be continued. For instance, 

00 1 

n~3 n log n log log n 

diverges, whereas 

(13) 
00 1 

n~3 n log n(log log n)2 

converges. 

We may now observe that the terms of the series (12) differ very little 
from those of (13). Still, one diverges, the other converges. If we continue the 
process which led us from Theorem 3.28 to Theorem 3.29, and then to (12) and 
(13), we get pairs of convergent and divergent series whose terms differ even 
less than those of (12) and (13). One might thus be led to the conjectt1re that 
there is a limiting situation of some sort, a ''boundary'' with all convergent 
series on one side, all divergent series on the other side:-at least as far as series 
with monotonic coefficients are concerned. This notion of ''boundary'' is of 
course quite vague. The point we wish to make is this: No matter how we make 
this notion precise, the conjecture is false. Exercises 11 (b) and 12(b) may serve 
as illustrations. 

We do not wish to go any deeper into this aspect of convergence theory, 
and refer the reader to Knopp's ''Theory and Application of Infinite Series," 
Chap. IX, particularly Sec. 41. 

THE NUMBER e 

3.30 Definition e = I; 1 
. 

n=on! 

Here n ! = 1 · 2 · 3 · · · n if n ~ 1, and O ! = 1. 
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Since 

1 1 1 
s =1+1+-+---+···+----

n 1·2 1·2·3 1·2···n 

1 1 1 
<1 +1 +-+--,-+···+-<3 2 22 2n-l , 

the series converges, and the definition makes sense. In fact, the series converges 
very rapidly and allows us to compute e with great accuracy. 

It is of interest to note that e can also be defined by means of another 
limit process; the proof provides a good illustration of operations with limits: 

3.31 Theorem lim 

Proof Let 

1 n 

1 + - = e. 
n 

n 1 
Sn= L kl, 

k=O • 

By the binomial theorem, 

1 
tn = l + 1 + 1 2. 

1 1 
1-- +

n 3! 

Hence tn ~Sn' so that 

1 
1 - -

n 

1 n 

t = l+- · n 

2 
1 - -

n 

n 

+ ... 

1 1 +- 1--
n! n 

2 
1 - -

n 

(14) lim sup tn ~ e, 
n ➔ oo 

by Theorem 3.19. Next, if n ~ m, 

n-1 
... 1- --

n 

1 
tn ~ 1 + 1 + 

2 
1 

1-
n 

1 + ... +- 1 
1-

n 

m-1 
... 1--- • 

ml n 

Let n ➔ oo, keeping m fixed. We get 

1 

n ➔ oo 

so that 

n-+ oo 

Letting m > oo, we finally get 

(15) e ~ lim inf tn. 
n-+ oo 

The theorem follows from (14) and (15). 

• 
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The rapidity with which the series L 1 
converges can be estimated as 

n! 
follows: If sn has the same meaning as above, we have 

1 1 1 
e-s =---+---+---+··· 

n (n + 1) ! (n + 2) ! (n + 3) ! 

1 1 1 1 
<--- 1+--+---+··· =-

(n + 1) ! n + 1 (n + 1)2 n !n 
so that 

(16) 
1 

0 < e-s < -· 
n n!n 

Thus s10 , for instance, approximates e with an error less than 10- 1
. The 

inequality (16) is of theoretical interest as well, since it enables us to prove the 
irrationality of e very easily. 

3.32 Theorem e is irrational. 

(17) 

Proof Suppose e is rational. Then e = p/q, where p and q are positive 
integers. By (16), 

1 
0 <q!(e-sq) <-· 

q 

By our assumption, q!e is an integer. Since 

q!sq = q! 
1 1 

l+l+-+···+-
2 ! q! 

is an integer, we see that q!(e - sq) is an integer. 
Since q ~ l, (17) implies the existence of an integer between O and 1. 

We have thus reached a contradiction. 

Actually, e is not even an algebraic number. For a simple proof of this, 
see page 25 of Niven's book, or page 176 of Herstein's, cited in the Bibliography. 

THE ROOT AND RATIO TESTS 

3.33 Theorem (Root Test) Given :Ean, put a = lim sup ::/Ian I -
Then 

(a) if a< 1, :Ean converges,· 
(b) if a> 1, :Ean diverges; 
(c) if a = 1, the test gives no information. 
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Proof If °' < 1, we can choose /J so that °' < /J < 1, and an integer N 
such that 

n lanl </J 

for n ~ N [by Theorem 3.17(b)]. That is, n ~ N implies 

lanl < pn. 
Since O < /J < 1, 'E/Jn converges. Convergence of '£an follows now from 
the comparison test. 

If°'> 1, then, again by Theorem 3.17, there is a sequence {nk} such 
that 

Hence I an I > 1 for infinitely many values of n, so that the condition 
an ➔ O, necessary for convergence of '£an, does not hold (Theorem 3.23). 

To prove (c), we consider the series 

For each of these series oc = 1, but the first diverges, the second converges. 

3.34 Theorem (Ratio Test) The series '£an 

if 1. an+l 1 (a) converges 1 1m sup -- < , 
n➔ oo an 

(b) diverges if an+t ~ 1 for all n ~ n0, where n0 is some.fixed integer. 
an 

Proof If condition (a) holds, we can find /J < 1, and an integer N, such 
that 

</J 

for n ~ N. In particular, 

I aN + 1 I < /JI aN I , 
I aN + 2 I < /JI aN + 1 I < /12 I aN I, 
• • • • • • • • • • • • • • • • • • • 
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That is, 

lanl < laNIP-N • pn 
for n ~ N, and (a) follows from the comparison test, since r,pn converges. 

If I an+ 1 I ~ I an I for n ~ n0 , it is easily seen that the condition an ➔ 0 
does not hold, and (b) follows. 

Note: The knowledge that lim an+ 1/an = 1 implies nothing about the 
convergence of !:.an. The series !:-1/n and !:.l/n2 demonstrate this. 

3.3~ Examples 

(a) Consider the series 

1 1 1 1 1 1 1 1 
2 + 3 + 22 + 32 + 23 + 33 + 24 + 34 + ... ' 

for which 

I. . f an+l 1· 2 n 0 1m 1n = 1m 
3
- = , 

n➔ oo an n➔ oo 

1. • f n l' 2n 1m 1n an = 1m 
n➔ oo n➔ oo 

I. an+l }' 1 3 n 
1m sup -- = 1m - - = + oo. 
n➔ OO an n ➔ oo 2 2 

The root test indicates convergence; the ratio test does not apply. 
( b) The same is true for the series 

1 1 1 1 1 1 1 
2 + 1 + 8 + 4 + 3 2 + 16 + 128 + 64 + ... ' 

where 

1. . f an+ l 1 
Im In -- = -, 
n ➔ oo an 8 

I. an+l 2 1msup -- = , 
n➔ 00 an 

but 
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3.36 Remarks The ratio test is frequently easier to apply than the root test, 
since it is usually easier to compute ratios than nth roots. However, the root 
test has wider scope. More precisely: Whenever the ratio test shows conver
gence, the root test does too; whenever the root test is inconclusive, the ratio 
test is too. This is a consequence of Theorem 3.37, and is illustrated by the 
above examples. 

Neither of the two tests is subtle with regard to divergence. Both deduce 
divergence from the fact that an does not tend to zero as n > oo. 

3.37 Theorem For any sequence { en} of positive numbers, 

(18) 

1· . f Cn+l 
Im Ill C ~ lim inf n en' 

n-+oo n n-+oo 

C 
l. nl l' n+l Im sup v en ~ Im sup · 

n-+ oo n-+ oo Cn 

Proof We shall prove the second inequality; the proof of the first is 
quite similar. Put 

1. Cn+ 1 a= Imsup--• 
n-+ 00 en 

If a = + oo, there is nothing to prove. If a is finite, choose f3 > a. There 
is an integer N such that 

for n ~ N. In particular, for any p > 0, 

(k = 0, 1, ... , p - 1 ). 

Multiplying these inequalities, we obtain 

CN+p ~ fJPcN' 

or 

C < C p-N. pn 
n - N (n ~ N). 

Hence 

so that 

lim sup icn ~ /3, 
n-+oo 
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by Theorem 3.20(b). Since (18) is true for every f3 > r.<, we have 

lim sup n Cn ~ r.<. 
n-+ oo 

POWER SERIES 

3.38 Definition Given a sequence {en} of complex numbers, the series 

(19) 
00 

L CnZn 
n=O 

is called a power series. The numbers en are called the coefficients of the series; 
z is a complex number. 

In general, the series will converge or diverge, depending on the choice 
of z. More specifically, with every power series there is associated a circle, the 
circle of convergence, such that (19) converges if z is in the interior of the circle 
and diverges if z is in the exterior (to cover all cases, we have to consider the 
plane as the interior of a circle of infinite radius, and a point as a circle of radius 
zero). The behavior on the circle of convergence is much more varied and can
not be described so simply. 

3.39 Theorem Given the power series !:en zn, put 

n-+ oo 

1 
R =-· 

a 

(/fa= 0, R = +oo; if a= +oo, R = 0.) Then I:cnzn converges if lzl < R, and 
diverges if I z I > R. 

Proof Put an= cnzn, and apply the root test: 

Note: R is called the radius of convergence of .!:en zn. 

3.40 Examples 

(a) The series :Enn zn has R = 0. 
Zn 

(b) The series L 
I 

has R = + oo. (In this case the ratio test is easier to 
n. 

apply than the root test.) 
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(c) The series :Ezn has R = 1. If lzl = 1, the series diverges, since {zn} 
does not tend to O as n ➔ oo. 

n 

(d) The series L :._ has R = 1. It diverges if z = 1. It converges for all 
n 

other z with I z I = 1. (The last assertion will be proved in Theorem 3.44.) 
n 

(e) The series L z2 has R = 1. It converges for all z with I z I = 1, by 
n 

the comparison test, since I zn/n2 1 = 1/n2• 

SUMMATION BY PARTS 

3.41 Theorem Given two sequences {an}, {b,,}, put 

ifn ~ O; put A_ 1 = 0. Then, ifO ~p ~ q, we have 

(20) 
q q-1 

L anbn = L An(bn - hn+1) + Aqbq - Ap-lbp. 
n=p n=p 

Proof 

and the last expression on the right is clearly equal to the right side of 
(20). 

Formula (20), the so-called ''partial summation formula," is useful in the 
investigation of series of the form :Eanbn, particularly when {bn} is monotonic. 
We shall now give applications. 

3.42 Theorem Suppose 

(a) the partial sums An of :Eanform a bounded sequence,· 
(b) ho ~ b1 ~ b2 ~ · · · ; 
(c) lim bn = 0. 

n➔ oo 

Then :Ean bn converges. 
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Proof Choose M such that I An I ~ M for all n. Given e > 0, there is an 
integer N such that bN ~ (e/2M). For N ~ p ~ q, we have 

- q-1 - - I - LAn(bn hn+i)+Aqbq Ap-lbp1 
n=p I 

q-1 

~ M L (bn - b,,+1) + bq + hp 
n=p 

= 2MbP ~ 2MbN ~ e. 

Convergence now follows from the Cauchy criterion. We note that the 
• 

first inequality in the above chain depends of course on the fact that 
bn - bn+l ~ 0. 

3.43 Theorem Suppose 

(a) I C1 I ~ I C2 I ~ I c3 I ~ · · · ; 
(b) C2m-l ~ 0, C2m ~ 0 (m = 1, 2, 3, ... ); 
(c) limn➔ oo Cn = 0. 

Then Icn converges. 

Series for which (b) holds are called ''alternating series''; the theorem was 
known to Leibnitz. 

Proof Apply Theorem 3.42, with an = ( -1 )n + 1 , bn = I cn I , 

3.44 Theorem Suppose the radius of convergence of Icn zn is 1, and suppose 
c0 ~ c1 ~ c2 ~ • • ·, limn➔ oo Cn = 0. Then Icnzn converges at every point on the 
circle I z I = 1, except possibly at z = 1. 

Proof Put an= zn, bn = cn. The hypotheses of Theorem 3.42 are then 
satisfied, since 

n 

I An I = L Zm = 
m=O 

if I z I = 1, z :;l: 1. 

ABSOLUTE CONVERGENCE 

1 - zn+l 

1-z 
2 

~11-zl' 

The series Ian is said to converge absolutely if the series I I an I converges. 

3.4~ Theorem If Ian converges absolutely, then Ian converges. 
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Proof The assertion follows from the inequality 

m m 

L ak ~ L I akl, 
k=n k•n 

plus the Cauchy criterion. 

3.46 Remarks For series of positive terms, absolute convergence is the same 
as convergence. 

If Lan converges, but L l an l diverges, we say that Lan converges non
absolutely. For instance, the series 

converges nonabsolutely (Theorem 3.43). 
The comparison test, as well as the root and ratio tests, is really a test for 

absolute convergence, and therefore cannot give any information about non
absolutely convergent series. Summation by parts can sometimes be used to 
handle the latter. In particular, power series converge absolutely in the interior 
of the circle of convergence. 

We shall see that we may operate with absolutely convergent series very 
much as with finite sums. We may multiply them term by term and we may 
change the order in which the additions are carried out, without affecting the 
sum of the series. But for nonabsolutely convergent series this is no longer true, 
and more care has to be taken when dealing with them. 

ADDITION AND MULTIPLICATION OF SERIES 

3.47 Theorem If Lan = A, and Lbn = B, then L(an + bn) = A + B, and 
Lean = cA, for any fixed c. 

Proof Let 

Then 
n 

An + Bn = L (ak + bk). 
k=O 

Since limn➔ oo An= A and limn➔ oo Bn = B, we see that 

n ➔ oo 

The proof of the second assertion is even simpler. 
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Thus two convergent series may be added term by term, and the result
ing series converges to the sum of the two series. The situation becomes more 
complicated when we consider multiplication of two series. To begin with, we 
have to define the product. This can be done in several ways; we shall consider 
the so-called ''Cauchy product." 

3.48 Definition Given La" and Lb", we put 

" 
en= L akbn-k 

k=O 
(n=0,1,2, ... ) 

and call LC" the product of the two given series. 
This definition may be motivated as follows. If we take two power 

series Lanz" and "'£b"z", multiply them term by term, and collect terms contain
ing the same power of z, we get 

00 00 

L a" z" · L bn z" = (a0 + a1z + a2 z
2 + · · ·)(b0 + b1z + b2 z

2 + · · ·) 
n=O n=O 

= a0 b0 + (a0 b1 + a1 b0}z + (a0 b2 + a1 b1 + a2 b0}z2 + · · · 

= Co + C 1 Z + C 2 z2 + ' ' ' . 

Setting z = 1, we arrive at the above definition. 

3.49 Example If 

and A" ➔ A, B" ➔ B, then it is not at all clear that { C"} will converge to AB, 
since we do not have C" = A" B". The dependence of { C"} on {A"} and {.B"} is 
quite a complicated one (see the proof of Theorem 3.50). We shall now show 
that the product of two convergent series may actually diverge. 

The series 

00 
( -1)" 1 1 1 I ----;===1--+---+··· 

n=oJn + I J2 J3 J4 
converges (Theorem 3.43). We form the product of this series with itself and 
obtain 

00 

LC"= 1 -
n=O 

1 1 1 

J3 + JiJ2 + J3 
1 1 1 1 

- J4+ J3J2 + J2J3 + J4 + ... ' 
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so that 

Since 

we have 

n 1 
en =(-I)nL --:=====· 

k = o J (n - k + 1 )(k + I) 

( n - k + 1 )(k + I) = n 
-+I 
2 

2 n 
- - -k 

2 

I I 
~ 2 _ 2(n + I) 

C > L, -- ----, 
n -k=on +2 n +2 

n 
-+I 
2 

2 

• 

so that the condition en ➔ 0, which is necessary for the convergence of l:cn , is 
not satisfied. 

In view of the next theorem, due to Mertens, we note that we have here 
considered the product of two nonabsolutely convergent series. 

3.50 Theorem Suppose 

Then 

00 

(a) L an converges absolutely, 
n=O 

00 

(b) Lan= A, 
n=O 

00 

(c) L bn = B, 
n=O 

n 

(d) Cn = L ak bn-k 
k=O 

(n = 0, I, 2, ... ). 

00 

L Cn = AB. 
n=O 

That is, the product of two convergent series converges, and to the right 
value, if at least one of the two series converges absolutely. 

Proof Put 

Then 

Cn = aobo + (aob1 + a1bo) + · · · + (aobn + a1bn-1 + · ·· + anbo) 

= a0Bn + a1 Bn-i +···+an Bo 

= ao(B + Pn) + a1(B + Pn-1) + · · · + an(B + Po) 

= AnB + aoPn + a1Pn-1 + ''' + anPo 
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Put 
Yn = ao/Jn + a1/Jn-l +'''+an/Jo• 

We wish to show that Cn ➔ AB. Since An B ► AB, it suffices to 
show that 

(21) lim Yn = 0. 

Put 

[It is here that we use (a).] Let e > 0 be given. By (c}, /Jn ► 0. Hence we 
can choose N such that I /Jn I ~ e for n ~ N, in which case 

IYnl ~I/Joan+···+ fJNan-NI + I/JN+lan-N-1 + ·· · + /Jnaol 

~I/Joan+···+ fJNan-NI + ea. 

Keeping N fixed, and letting n ➔ oo, we get 

lim sup I Yn I ~ ea, 
n➔ oo 

since ak ➔ 0 ask ➔ oo. Since e is arbitrary, (21) follows. 

Another question which may be asked is whether the series ten, if con
vergent, must have the sum AB. Abel showed that the answer _is in the affirma
tive. 

3.51 Theorem If the series tan, tbn, ten converge to A, B, C, and 
Cn = ao bn + ... + an ho' then C = AB. 

Here no assumption is made concerning absolute convergence. We shall 
give a simple proof (which depends on the continuity of power series) after 
Theorem 8.2. 

REARRANGEMENTS 

3.52 Definition Let {kn}, n = 1, 2, 3, ... , be a sequence in which every 
positive integer appears once and only once (that is, {kn} is a 1-1 function from 
J onto J, in the notation of Definition 2.2). Putting 

' a = ak n " 
(n=l,2,3, ... ), 

we say that ta~ is a rearrangement of tan . 
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If {sn}, {s~} are the sequences of partial sums of tan, ta~, it is easily seen 
that, in general, these two sequences consist of entirely different numbers. 
We are thus led to the problem of determining under what conditions all 
rearrangements of a convergent series will converge and whether the sums are 
necessarily the same. 

3.53 Example Consider the convergent series 

(22) 1-½+¼-¼+½--l;+··· 

and one of its rearrangements 

(23) 1 + ¼ - ½ + t + t - ¼ + ½ + 1
1
1 - ¼ + ... 

in which two positive terms are always followed by one negative. If s is the 
sum of (22), then 

s < 1 - ½ + ½ = i, 
Since 

1 1 1 
- 3 + 4k - 1 - 2k > O 

for k ~ 1, we see that s; < s~ < s~ < · · · , where s~ is nth partial sum of (23). 
Hence 

1. , , _S_ 
Im sup Sn > S3 = 0 , 
n➔ oo 

so that (23) certainly does not converge to s [we leave it to the reader to verify 
that (23) does, however, converge]. 

This example illustrates the following theorem, due to Riemann. 

3.54 Theorem Let tan be a ,fleries of real numbers which converges, but not 
absolutely. Suppose 

-00 ~ CX ~ p ~ 00. 

Then there exists a rearrangement ta~ with partial sums s~ such that 

(24) lim inf s~ = ex, lim sups~ = p. 
n➔ oo n➔ oo 

Proof Let 

(n = 1, 2, 3, ... ). 
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Then Pn - qn = an, Pn + qn = I an I, Pn ~ 0, qn ~ 0. The series "'f.pn, "'f.qn 
must both diverge. 

For if both were convergent, then 

would converge, contrary to hypothesis. Since 

N N N N 

L an = L (Pn - qn) = L Pn - L qn, 
n=1 n=1 n=1 n=1 

divergence of "'f.pn and convergence of "'f.qn ( or vice versa) implies diver
gence of "'f.an , again contrary to hypothesis. 

Now let P1 , P2 , P 3 , ••• denote the nonnegative terms of "'f.an, in the 
order in which they occur, and let Q1 , Q2 , Q 3 , .•. be the absolute values 
of the negative terms of "'f.an, also in their original order. 

The series "'f.Pn, "'f.Qn differ from "'f.pn, "'f.qn only by zero terms, and 
are therefore divergent. 

We shall construct sequences {mn}, {kn}, such that the series 

(25) P1 + ·•· +P,,, 1 - Q1 - ··· - Qk1 +Pm1+1 + ··· 

+Pm2 - Qk1+1 - ··• - Qk2 + •••, 
which clearly is a rearrangement of "'f.an, satisfies (24). 

Choose real-valued sequences {C<n}, {/3n} such that C<n---+ C<, /3n---+ /3, 
an < Pn, /31 > o. 

Let m1 , k1 be the smallest integers such that 

P1 + ··· +Pm1 > /31, 

P1 + • • • + P m1 - Ql - • • • - Qk1 < C(l; 

let m2 , k 2 be the smallest integers such that 

P1 + ••• +Pm1 - Q1 - •·• - Qk1 +P,,,1+1 + ••• +Pm2 > /32, 

P1 + ••• +P,n1 - Q1 - ·•• - Qk1 +Pm1+l + ••• +Pm2 - Qk1+l 

- ... - Qk2 < C<2; 

and continue in this way. This is possible since "'f.Pn and "'f.Qn diverge. 
If xn, Yn denote the partial sums of (25) whose last terms are Pm", 

-Qkn, then 

Since Pn---+ 0 and Qn---+ 0 as n---+ oo, we see that Xn---+ /3, Yn---+ C(. 

Finally, it is clear that no number less than C< or greater than /3 can 
be a subsequential limit of the partial sums of (25). 
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3.SS Theorem lf"f.an is a series of complex numbers which converges absolutely, 
then every rearrangement of "f.an converges, and they all converge to the same sum. 

Proof Let "f.a~ be a rearrangement, with partial sums s~. Given e > 0, 
there exists an integer N such that m ~ n ~ N implies 

(26) 
• 1=n 

Now choose p such that the integers 1, 2, ... , N are all contained in the 
set k1 , k 2 , ••• , kP (we use the notation of Definition 3.52). Then if n > p, 
the numbers a1, ... , aN will cancel in the difference sn - s~, so that 
I sn - s~ I ~ e, by (26). Hence {s~} converges to the same sum as {sn}. 

EXERCISES 

1. Prove that convergence of {sn} implies convergence of { I Sn I}. Is the converse true? 

2. Calculate lim (V n2 + n - n). 
n ➔ OO 

3. If s1 = V2, and 

(n = 1, 2, 3, ... ), 

prove that {sn} converges, and that Sn< 2 for n = 1, 2, 3, ... . 
4. Find the upper and lower limits of the sequence {sn} defined by 

St =0; 

S. For any two real sequences {an}, {bn}, prove that 

lim sup (an + bn) ::::;; lim sup On + lim sup bn' 
n ➔ OO n ➔ OO n ➔ OO 

provided the sum on the right is not of the form oo - oo. 
6. Investigate the behavior (convergence or divergence) of :l:an if 

(a) On ='Vn + 1- Vn; 

(b) On = v n + 1 - Vn; 
n 

(c) On= (v" n - l)n; 

1 
(d) On = 1 + zn' for complex values of z. 

7. Prove that the convergence of :l:an implies the convergence of 

van 
:E n , 

if On::?: 0. 
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8. If Lan converges, and if {bn} is monotonic and bounded, prove that Lan bn con
verges. 

9. Find the 1·adius of convergence of each of the following power series: 

2n 
(c) I: 2 zn, n 

2n 
(b) L ~ zn, 

10. Suppose that the coefficients of the power series I:an zn are integers, infinitely many 
of which are distinct from zero. Prove that the radius of convergence is at most 1. 

11. Suppose On > 0, Sn = 01 + ... + On' and La,. diverges. 

(a) Prove that L 
1 

:nan diverges. 

(b) Prove that 

and deduce that I:~ diverges. 
Sn 

(c) Prove that 

""an and deduce that ,t.., 2 converges. 
Sn 

(d) What can be said about 

+,,,+ON +k 2: l _ SN 

SN+k SN+k 

On 1 1 
2~----
sn Sn-1 Sn 

L On 

1 + nan 
and 

12. Suppose an > 0 and Lan converges. Put 

(a) Prove that 

00 

rn= L Om, 
m=n 

1 
rn 

> -
rm 

if m < n, and deduce that I:~ diverges. 
rn 
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(b) Prove that 

On 
and deduce that L A 1- converges. 

·v rn 

13. Prove that the Cauchy product of two absolutely convergent series converges 
absolutely. 

14. If {sn} is a complex sequence, define its arithmetic means an by 

So+ S1 +'''+Sn 
Un= 

n+l 
(n =0, 1, 2, ... ). 

(a) If lim Sn = s, prove that lim Un = s. 
(b) Construct a sequence {sn} which does not converge, although lim an= 0. 
(c) Can it happen that Sn> 0 for all n and that lim sup Sn= oo, although lim an= 0? 
(d) Put On = Sn - Sn- 1, for n 2: 1. Show that 

1 n 

Sn - Un= l L kak. 
n + k=l 

Assume that lim (nan)= 0 and that {an} converges. Prove that {sn} converges. 
[This gives a converse of (a), but under the additional assumption that nan ► 0.] 
(e) Derive the last conclusion from a weaker hypothesis: Assume M < oo, 
I nan I~ M for all n, and lim an= a. Prove that lim Sn= a, by completing the 
following outline: 

If m < n, then 

m+ 1 1 n 
Sn - Un= -- (an - Um) + -- L (sn - s,), 

n-m n-m l=m+l 

For these i, 

Fix e > 0 and associate with each n the integer m that satisfies 

Then (m + 1)/(n - m) < 1/e and I Sn - s, I < Me. Hence 

lim suplsn - al ~Me. 
ft ➔ 00 

Since e was arbitrary, Jim Sn = a. 
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15. Definition 3.21 can be extended to the case in which the an lie in some fixed Rk. 
Absolute convergence is defined as convergence of :l: I an I, Show that Theorems 
3.22, 3.23, 3.25(a), 3.33, 3.34, 3.42, 3.45, 3.47, and 3.55 are true in this more 
general setting. (Only slight modifications are required in any of the proofs.) 

16. Fix a positive number IX. Choose Xi > v IX, and define X2, X3, X4, ... , by the 
recursion formula 

IX 
Xn+

Xn 
• 

(a) Prove that {xn} decreases monotonically and that lim Xn = v IX. 
(b) Put Bn = Xn - v;, and show that 

so that, setting f3 = 2 v IX, 

2 
8

2 
en n 

Bn +1 = 2 < . ;
Xn 2v IX 

2n 
Bi 

e,, + 1 < /3 (3 ( n = 1, 2, 3, ... ) . 

(c) This is a good algorithm for computing square roots. since the recursion 
formula is simple and the convergence is extremely rapid. For example, if IX= 3 
and X1 = 2, show that e1//3 < 1

1
0 and that therefore 

85 < 4. 10- 16 , 

17. Fix IX> 1. Take X1 >VIX, and define 

86 < 4' 10- 32
• 

2 IX+ Xn IX - Xn 
Xn+i=l-L =xn+l+ • 

(a) Prove that X1 > X3 > Xs > · · · . 
(b) Prove that X2 < X4 < x6 < · · · . 
(c) Prove that lim Xn = VIX. 

, Xn Xn 

(d) Compare the rapidity of conve1·gence of this process with the one described 
i11 Exercise 16. 

18. Replace the recursion formula of Exercise 16 by 

p-1 +IX -p+t 
Xn+1 = --Xn -Xn 

p p 

where p is a fixed positive integer, and describe the behavior of the resulting 
sequences {xn}, 

19. Associate to each sequence a= {1Xn}, in which IXn is O or 2, the real number 

oo IXn 
x(a) = L 

3
n. 

n=l 

Prove that the set of all x(a) is precisely the Cantor set described in Sec. 2.44. 
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20. Suppose {Pn} is a Cauchy sequence in a metric space X, and some subsequence 
{p,.,} converges to a point p e X. Prove that the full sequence {Pn} converges top. 

21. Prove the following analogue of Theorem 3.lO(b): If {En} is a sequence of closed 

nonempty and bounded sets in a complete metric space X, if En => E,. + 1, and if 

lim diam En = 0, 
n ➔ oo 

then n f En consists of exactly one point. 
22. Suppose Xis a nonempty complete metric space, and {G,.} is a sequence of 

dense open subsets of X. Prove Baire's theorem, namely, that n f Gn is not 
empty. (In fact, it 1s dense in X.) Hint: Find a shrinking sequence of neighbor~ 
hoods E,. such that£,. c G,., and apply Exercise 21. 

23. Suppose {pn} and {qn} are Cauchy sequences in a metric space X. Show that the 
sequence {d(Pn, qn)} converges. Hint: For any m, n, 

d(pn, qn) ~ d(pn, Pm) + d(Pm, qm) + d(qm , qn); 

it follows that 

is small if m and n are large. 
24. Let X be a metric space. 

(a) Call two Cauchy sequences {Pn}, {qn} in X equivalent if 

lim d(pn, q,.) = 0. 
n ➔ oo 

Prove that this is an equivalence relation. 
(b) Let X* be the set of all equivalence classes so obtained. If Pe x•, Q e X*, 
{p,,} e P, {qn} e Q, define 

!l.(P, Q) = lim d(pn, qn); 
n ➔ OO 

by Exercise 23, this limit exists. Show that the number !l.(P, Q) is unchanged if 
{Pn} and {qn} are replaced by equivalent sequences, and hence that fl. is a distance 
function in X*. 

(c) Prove that the resulting metric space X* is complete. 
(d) For each p e X, there is a Cauchy sequence all of whose terms are p; let Pp 
be the element of X* which contains this sequence. Prove that 

!l.(Pp, P4) = d(p, q) 

for all p, q e X. In other words, the mapping <p defined by <p(p) =PP is an isometry 
(i.e., a distance-preserving mapping) of X into X*. 
(e) Prove that <p(X) is dense in X*, and that <p(X) = X* if Xis complete. By (d), 
we may identify X and <p(X) and thus regard X as embedded in the complete 
metric space X*. We call X* the completion of X. 

25. Let X be the metric space whose points are the rational numbers, with the metric 
d(x, y) =Ix - y I, What is the completion of this space? (Compare Exercise 24.) 



CONTINUITY 

The function concept and some of the related terminology were introduced in 
Definitions 2.1 and 2.2. Although we shall (in later chapters) be mainly interested 
in real and complex functions (i.e., in functions whose values are real or complex 
numbers) we shall also discuss vector-valued functions (i.e., functions with 
values in Rk) and functions with values in an arbitrary metric space. The theo
rems we shall discuss in this general setting would not become any easier if we 
restricted ourselves to real functions, for instance, and it actually simplifies and 
clarifies the picture to discard unnecessary hypotheses and to state and prove 
theorems in an appropriately general context. 

The domains of definition of our functions will also be metric spaces, 
suitably specialized in various instances. 

LIMITS OF FUNCTIONS 

4.1 Definition Let X and Y be metric spaces; suppose E c X, f maps E into 
Y, and p is a limit point of E. We write f(x) ~ q as x ~ p, or 

(1) lim/(x) = q 
x➔p 
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if there is a point q e Y with the following property: For every e > 0 there 
exists a o > 0 such that 

(2) d1(f(x), q) < e 

for all points x e E for which 

(3) 0 < dx(x,p) < o. 
The symbols dx and dr refer to the distances in X and Y, respectively. 
If X and/ or Y are replaced by the real line, the complex plane, or by some 

euclidean space Rk, the distances dx, dr are of course replaced by absolute values, 
or by norms of differences ( see Sec. 2.16). 

It should be noted that p e X, but that p need not be a point of E 
in the above definition. Moreover, even if p e E, we may very well have 
f(p) f:. limx➔pf(x). 

We can recast this definition in terms of limits of sequences: 

4.2 Theorem Let X, Y, E, f, and p be as in Definition 4. I. Then 

(4) limf(x) =q 
x➔p 

if and only if 

(5) lim f(pn) =q 
n ➔ oo 

for every sequence {Pn} in E such that 

(6) Pn f:. P, lim Pn = p. 
n➔ oo 

Proof Suppose ( 4) holds. Choose {Pn} in E satisfying (6). Let e > 0 
be given. Then there exists o > 0 such that dr(f(x), q) < e if x e E 
and O < dx(x, p) < o. Also, there exists N such that n > N implies 
0 < dx(Pn ,p) < o. Thus, for n > N, we have dy(f(pn), q) < e, which 
shows that (5) holds. 

Conversely, suppose ( 4) is false. Then there exists some e > 0 such 
that for every o > 0 there exists a point x e E (depending on o), for which 
dr(f(x), q) :2:: e but O < dx(x, p) < o. Taking on = I/n (n = I, 2, 3, ... ), we 
thus find a sequence in E satisfying (6) for which (5) is false. 

Corollary If f has a limit at p, this limit is unique. 

This follows from Theorems 3.2(b) and 4.2. 
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4.3 Definition Suppose we have two complex functions,/ and g, both defined 
on E. By f + g we mean the function which assigns to each point x of E the 
number f(x) + g(x). Similarly we define the difference f - g, the product fg, 
and the quotientf/g of the two functions, with the understanding that the quo
tient is defined only at those points x of E at which g(x) "I:- 0. If f assigns to each 
point x of E the same number c, then f is said to be a constant function, or 
simply a constant, and we write f = c. If f and g are real functions, and if 
f(x) ~ g(x) for every x e E, we shall sometimes write f ~ g, for brevity. 

Similarly, if f and g map E into Rk, we define f + g and f · g by 

(f + g)(x) = f(x) + g(x), (f · g)(x) = f(x) • g(x); 

and if). is a real number, (lf)(x) = ).f(x). 

4.4 Theorem Suppose E c X, a metric space, p is a limit point of E, f and g 
are complex functions on E, and 

lim f(x) = A, lim g(x) = B. 
x➔p 

Tl1en (a) lim (f + g)(x) = A + B; 
x➔p 

(b) lim (fg)(x) = AB; 
x➔ p 

(c) lim [_ (x) = ~, if B "I:- 0. 
x➔ p g B 

Proof In view of Theorem 4.2, these assertions follow immediately from 
the analogous properties of sequences (Theorem 3.3). 

Remark If f and g map E into Rk, then (a) remains true, and (b) becomes 
(b') lim (f · g)(x) = A · B. 

(Compare Theorem 3.4.) 

CONTINUOUS FUNCTIONS 

4.S Definition Suppose X and Y are metric spaces, E c X, p e E, and f maps 
E into Y. Then f is said to be continuous at p if for every e > 0 there exists a 
c5 > 0 such that 

dr(f(x),f(p)) < e 

for all points x e E for which dx(x, p) < b. 
If f is continuous at every point of E, then f is said to be continuous on E. 
It should be noted that f has to be defined at the point p in order to be 

continuous at p. (Compare this with the remark following Definition 4.1.) 
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If p is an isolated point of E, then our definition implies that every function 
f which has E as its domain of definition is continuous at p. For, no matter 
which e > 0 we choose, we can pick b > 0 so that the only point x e E for which 
dx(x,p) <bis x = p; then 

dy(f(x),f(p)) = 0 < e. 

4.6 Theorem In the situation given in Definition 4.5, assume also that p is a 
limit point of E. Then f is continuous at p if and only if limx ... pf(x) = f(p). 

Proof This is clear if we compare Definitions 4.1 and 4.5. 

We now turn to compositions of functions. A brief statement of the 
following theorem is that a continuous function of a continuous function is 
continuous. 

4. 7 Theorem Suppose X, Y, Z are metric spaces, E c X, f maps E into Y, g 
maps the range off, f(E), into Z, and h is the mapping of E into Z defined by 

h(x) = g(f (x)) (x e E). 

If f is continuous at a point p e E anti if g is continuous at the point f(p), then h is 
continuous at p. 

This function his called the composition or the composite off and g. The 
, 

notation 
h =g 0 f 

is frequently used in this context. 

Proof Let e > 0 be given. Since g is continuous at f(p), there exists 
r, > 0 such that 

d2(g(y), g(f(p))) < e if dy(y,f(p)) < r, and y ef(E). 

Since f is continuous at p, there exists b > 0 such that 

dr(f(x),f(p)) < r, if dx(x, p) <band x e E. 

It follows that 

d2(h(x), h(p)) = d2(g(f(x)), g(f(p))) < e 

if dx(x, p) <band x e E. Thus his continuous at p. 

4.8 Theorem A mapping 1· of a metric space X into a metric space Y is con
tinuous on X if and only if 1- 1 

( V) is open in X for every open set V in Y. 

(Inverse images are defined in Definition 2.2.) This is a very useful charac
terization of continuity. 
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Proof Suppose/is continuous on X and Vis an open set in Y. We have 
to show that every point of 1- 1(V) is an interior point of 1- 1(V). So, 
suppose p e X and f (p) e V. Since V is open, there exists e > 0 such that 
ye V if dr(f(p), y) < e; and since f is continuous at p, there exists b > 0 
such that dr(f(x),f(p)) < e if dx(x, p) < b. Thus x ef- 1(V) as soon as 
dx(x,p) < b. 

Conversely, suppose f- 1(V) is open in X for every open set Vin Y. 
Fix p e X and e > 0, let V be the set of ally e Y such that dr(Y,f(p)) < e. 
Then Vis open; hencef- 1(V) is open; hence there exists b > 0 such that 
x ef- 1(V)as soon as dx(P, x) < b. But if x e 1- 1(V), then f(x) e V, so 
that dr(f(x),f(p)) < e. 

This completes the proof. 

Corollary A mapping f of a metric space X into a metric space Y is continuous if 
and only if f- 1 

( C) is closed in X for every closed set C in Y. 

This follows from the theorem, since a set is closed if and only if its com
plement is open, and sincef- 1(Ec) = [f- 1(E)]c for every E c Y. 

We now turn to complex-valued and vector-valued functions, and to 
functions defined on subsets of Rk. 

4.9 Theorem Let f and g be complex continuous functions on a metric space X. 
Thenf + g,fg, andf /g are continuous on X. 

In the last case, we must of course assume that g(x) "I:- 0, for all x e X. 

Proof At isolated points of X there is nothing to prove. At limit points, 
the statement follows from Theorems 4.4 and 4.6. 

4.10 Theorem 

(7) 

(a) Let / 1 , ••• , .h be real functions on a metric space X, and let f be the 
mapping of X into Rk defined by 

f(x) = (Ji(x), ... ,/4(x)) (x EX); 

then f is continuous if and only if each of the functions Ji, ... , /2 is continuous. 
(b) If f and g are continuous mappings of X into Rk, then f + g and f · g 
are continuous on X. 

The functions Ji, ... , /2 are called the components off. Note that 
f + g is a mapping into Rk, whereas f • g is a real function on X. 



88 PllINCIPLES OF MATHEMATICAL ANALYSIS 

Proof Part (a) follows from the inequalities 

k i 
11,(x) - f,(y) I =s; I f(x) - f(y) I = L lfi(x) - fi(y) I 2 ' 

t= 1 

for j = I, ... , k. Part (b) follows from (a) and Theorem 4.9. 

4.11 Examples If x1, ••• , xk are the coordinates of the point x e Rk, the 
functions <t,, defined by 

(8) 

are continuous on Rk, since the inequality 

I <Pi(x) - <Pi(Y) I :s; Ix - YI 

shows that we may take b = e in Definition 4.5. The functions <Pt are sometimes 
called the coordinate functions. 

Repeated application of Theorem 4.9 then shows that every monomial 

(9) x:1~2 • , , x::k 
where n1, ••• , nk are nonnegative integers, is continuous on Rk. The same is 
true of constant multiples of (9), since constants are evidently continuous. It 
follows that every polynomial P, given by 

(10) 

is continuous on Rk. Here the coefficients cni··•nk are complex numbers, n1 , ••• , nk 
are nonnegative integers, and the sum in (IO) has finitely many terms. 

Furthermore, every rational function in x1, ... , xk, that is, every quotient 
of two polynomials of the form (10), is continuous on Rk wherever the denomi
nator is different from zero. 

From the triangle inequality one sees easily that 

(11) I Ix I - I YI I =s; Ix - YI (x, Y e Rk). 

Hence the mapping x ~ Ix I is a continuous real function on Rk. 
If now f is a continuous mapping from a metric space X into Rk, and if <P 

is defined on Xby setting <J,(p) = lf(p)I, it follows, by Theorem 4.7, that <J, is a 
continuous real function on X. 

4.12 Remark We defined the notion of continuity for functions defined on a 
subset E of a metric space X. However, the complement of E in X plays no 
role whatever in this definition (note that the situation was somewhat different 
for limits of functions). Accordingly, we lose nothing of interest by discarding 
the complement of the domain off This means that we may just as well talk 
only about continuous mappings of one metric space into another, rather than 
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of mappings of subsets. This simplifies statements and proofs of some theorems. 
We have already made use of this principle in Theorems 4.8 to 4.10, and will 
continue to do so in the following section on compactness. 

CONTINUITY AND COMPACTNESS 

4.13 Definition A mapping f of a set E into Rk is said to be bounded if there is 
a real number M such that I f(x) I =s; M for all x e E. 

4.14 Theorem Suppose f is a continuous mapping of a compact metric space 
X into a metric space Y. Then f(X) is compact. 

Proof Let {VIZ} be an open cover off(X). Since/is continuous, Theorem 
4.8 shows that each of the sets /- 1(VIZ) is open. Since X is compact, 
there are finitely many indices, say a1, ••• , an, such that 

(12) X c/- 1(VIZ1) u ... u 1-1(VIZn). 

(13) 

Since/(f- 1(£)) c E for every E c Y, (12) implies that 

/{X) C VIZ1 U ''' U VIZn, 

This completes the proof. 

Note: We have used the relation f(f- 1(E)) c E, valid for E c Y. If 
E c X, then/- 1(/(E)) => E; equality need not hold in either case. 

We shall now deduce some consequences of Theorem 4.14. 

4.15 Theorem If f is a continuous mapping of a compact metric space X into 
Rk, then f(X) is closed and bounded. Thus, f is bounded. 

This follows from Theorem 2.41. The result is particularly important 
when .f is real: 

4.16 Theorem Suppose f is a continuous real function on a compact metric 
space X, and 

(14) M = sup f(p), m = inf f(p). 
peX peX 

Then there exist points p, q e X such thatf(p) = M andf(q) = m. 

The notation in (14) means that Mis the least upper bound of the set of 
all numbersj(p), where p ranges over X, and that mis the greatest lower bound 
of tl1is set of numbers. 
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The conclusion may also be stated as follows: There exist points p and q 
in X such that f(q) ~f(x) ~f(p) for all x e X; that is, f attains its maximum 
(at p) and its minimum (at q). 

Proof By Theorem 4.15, f ( X) is a closed and bounded set of real num
bers; hence/ (X) contains 

M = supf(X) 

by Theorem 2.28. 

and m = inff(X), 

4.17 Theorem Suppose f is a continuous 1-1 mapping of a compact metric 
space X onto a metric space Y. Then the inverse mapping 1- 1 defined on Y by 

(xe X) 

is a continuous mapping of Y onto X. 

Proof Applying Theorem 4.8 to .r- 1 in place of/, we see that it suffices 
to prove that/(V) is an open set in Y for every open set Vin X. Fix such 
a set V. 

The complement V c of V is closed in X, hence compact (Theorem 
2.35); hence f(Vc) is a compact subset of Y (Theorem 4.14) and so is 
closed in Y (Theorem 2. 34). Since .f is one-to-one and onto, f ( V) is the 
complement off ( V c). Hence f ( V) is open. 

4.18 Definition Let/be a mapping of a metric space X into a metric space Y. 
We say that/ is uniformly continuous on X if for every e > 0 there exists{)> 0 
such that 

(15) dy(f(p),f(q)) < B 

for all p and q in X for which dx(P, q) < b. 
Let us consider the differences between the concepts of continuity and of 

uniform continuity. First, uniform continuity is a property of a function on a 
set, whereas continuity can be defined at a single point. To ask whether a given 
function is uniformly continuous at a certain point is meaningless. Second, if 
f is continuous on X, then it is possible to find, for each e > 0 and for each 
point p of X, a number b > 0 having the property specified in Definition 4.5. This 
b depends one and on p. If f is, however, uniformly continuous on X, then it is 
possible, for each e > 0, to find one number {) > 0 which will do for all points 
p of X. 

Evidently, every uniformly continuous function is continuous. That the 
two concepts are equivalent on compact sets follows from the next theorem. 
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4.19 Theorem Let f be a continuous mapping of a compact metric space X 
into a metric space Y. Then f is uniformly continuous on X. 

(16) 

(17) 

(18) 

(19) 

(20) 

Proof Let e > 0 be given. Since f is continuous, we can associate to 
each point p e X a positive number <J,(p) such that 

q e X, dx(P, q) < <J,(p) implies 
B 

dr(f(p), f(q)) < 2· 

Let J(p) be the set of all q e X for which 

dx(P, q) < ½<J>(p). 

Since p e J(p), the collection of all sets J(p) is an open cover of X; and 
since Xis compact, there is a finite set of points p 1, .•• , Pn in X, such that 

X C J(p1) U • • • U J(pn). 
We put 

b = ½ min [<P(P1), •.. , <P(Pn)]. 

Then b > 0. (This is one point where the finiteness of the covering, in
herent in the definition of compactness, is essential. The minimum of a 
finite set of positive numbers is positive, whereas the inf of an infinite set 
of positive numbers may very well be 0.) 

Now let q and p be points of X, such that dx(P, q) < b. By (18), there 
is an integer m, 1 ~ m ~ n, such that p e J (Pm); hence 

and we also have 

dx(q, Pm) ~ dx(P, q) + dx(P, Pm) < b + ½</>(Pm) =s; <J>(pm). 

Finally, (16) shows that therefore 

dy(f(p),f(q)) =s; dy(f(p),f(Pm)) + dy(f(q),f(Pm)) < B. 

This completes the proof. 

An alternative proof is sketched in Exercise 10. 
We now proceed to show that compactness is essential in the hypotheses 

of Theorems 4.14, 4.15, 4.16, and 4.19. 

4.20 Theorem Let E be a noncompact set in R1 • Then 

(a) there exists a continuous function on E which is not bounded,· 
(b) there exists a continuous and bounded function on E which has no 

• maxzmum. 
If, in addition, E is bounded, then 
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(21) 

(22) 

(23) 

(c) there exists a continuous function on E which is not uniformly 
• continuous. 

Proof Suppose first that E is bounded, so that there exists a limit point 
x0 of E which is not a point of E. Consider 

1 
f(x)=--

x-x0 
(x e E). 

This is continuous on E (Theorem 4.9), but evidently unbounded. To see 
that (21) is not uniformly continuous, let e > 0 and~> 0 be arbitrary, and 
choose a point x e E such that Ix - x0 I < ~- Taking t close enough to 
x 0 , we can then make the difference lf(t) - f(x) I greater than e, although 
It - xi < ~- Since this is true for every~> O,f is not uniformly continu
ous on E. 

The function g given by 

l 
g(x) = 1 + (x - x

0
) 2 (xeE) 

is continuous on E, and is bounded, since O < g(x) < 1. It is clear that 

sup g(x) = 1, 
xeE 

whereas g(x) < l for all x e E. Thus g has no maximum on E. 
Having proved the theorem for bounded sets E, let us now suppose 

that E is unbounded. Then f(x) = x establishes (a), whereas 

x2 
h(x) = I 2 +x 

(xeE) 

establishes (b), since 

sup h(x) = 1 
xeE 

and h(x) < 1 for all x e E. 
Assertion (c) would be false if boundedness were omitted from the 

hypotheses. For, let E be the set of all integers. Then every function 
defined on E is uniformly continuous on E. To see this, we need merely 
take~< 1 in Definition 4.18. 

We conclude this section by showing that compactness is also essential in 
Theorem 4.17. 
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4.21 Example Let X be the half-open interval [O, 2n) on the real line, and 
let f be the mapping of X onto the circle Y consisting of all points whose distance 
from the origin is 1, given by 

(24) f(t) = (cost, sin t) (0 ~ t < 2n). 

The continuity of the trigonometric functions cosine and sine, as well as their 
periodicity properties, will be established in Chap. 8. These results show that 
f is a continuous 1-1 mapping of X onto Y. 

However, the inverse mapping (which exists, since f is one-to-one and 
onto) fails to be continuous at the point (1, 0) = f(O). Of course, X is not com
pact in this example. (It may be of interest to observe that r- 1 fails to be 
continuous in spite of the fact that Y is compact!) 

CONTINUITY AND CONNECTEDNESS 

4.22 Theorem If f is a continuous mapping of a metric space X into a metric 
space Y, and if E is a connected subset of X, then f(E) is connected. 

Proof Assume, on the contrary, that/(£)= Au B, where A and Bare 
nonempty separated subsets of Y. Put G =En f- 1(A), H =En f- 1(B). 

Then E =Gu H, and neither G nor His empty. 
Since Ac A (the closure of A), we have G c/- 1(.A); the latter set is 

closed, since/is continuous; hence G c/- 1(.A). It follows that/(G) c .A. 
Since f(H) =Band An Bis empty, we conclude that G n His empty. 

The same argument shows that G n His empty. Thus G and Hare 
separated. This is impossible if E is connected. 

4.23 Theorem Let f be a continuous real function on the interval [a, b ]. If 
f(a) <f(b) and if c is a number such that f(a) < c <f(b), then there exists a 
point x e (a, b) such that f(x) = c. 

A similar result holds, of course, if /(a) > f(b). Roughly speaking, the 
theorem says that a continuous real function assumes all intermediate values on 
an interval. 

Proof By Theorem 2.47, [a, b] is connected; hence Theorem 4.22 shows 
that f([a, b ]) is a connected subset of R 1

, and the assertion follows if we 
appeal once more to Theorem 2.47. 

4.24 Remark At first glance, it might seem that Theorem 4.23 has a converse. 
That is, one might think that if for any two points x1 < x 2 and for any number c 
between/(x1) and/(x2) there is a point x in (x1 , x2) such that/(x) = c, then/ 
must be continuous. 

That this is not so may be concluded from Example 4.27(d). 
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DISCONTINUITIES 

If x is a point in the domain of definition of the function f at which f is not 
continuous, we say that/is discontinuous at x, or that/ has a discontinuity at x. 
If f is defined on an interval or on a segment, it is customary to divide discon
tinuities into two types. Before giving this classification, we have to define the 
right-hand and the left-hand limits offatx, which we denote by/(x+) and/(x-), 
respectively. 

4.25 Definition Let/ be defined on (a, b). Consider any point x such that 
a ~ x < b. We write 

f(x+) =q 

if f(tn) ) q as n ) oo, for all sequences {tn} in (x, b) such that tn ) x. To obtain 
the definition off (x - ), for a < x ~ b, we restrict ourselves to sequences { tn} in 
(a, x). 

It is clear that any point x of (a, b), limf(t) exists if and only if 
t ➔ x 

f(x+) = f(x-) = lim/(t). 
t ➔ x 

4.26 Definition Let f be defined on (a, b). If f is discontinuous at a point x, 
and if f(x +) and f (x-) exist, then./ is said to have a discontinuity of the first 
kind, or a simple discontinuity, at x. Otherwise the discontinuity is said to be of 
the second kind. 

There are two ways in which a function can have a simple discontinuity: 
either f(x+) =/:, f(x-) [in which case the value /(x) is immaterial], or f(x +) = 
f (x - ) =/:- f(x). 

4.27 Examples 
(a) Define 

l 
f(x) = 

0 
(x rational), 
(x irrational). 

Then/has a discontinuity of the second kind at every point x. since 
neither f (x +) nor/ (x-) exists. 
(b) Define 

/(x) = X 
0 

(x rational), 
(x irrational). 
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Then f is continuous at x = 0 and has a discontinuity of the second 
kind at every other point. 
(c) Define 

X + 2 ( - 3 < X < - 2), 

f(x) = -x - 2 (-2 ~ X < 0), 

X + 2 (0 ~ X < 1). 

Then f has a simple discontinuity at x = 0 and is continuous at 
every other point of ( - 3, 1 ). 
(d) Define 

. l 
s1n-

f(x) = X 
(x ¥= 0), 

0 (x = 0). 

Since neither f (0 +) nor f (0-) exists, f has a discontinuity of the 
second kind at x = 0. We have not yet shown that sin xis a continuous 
function. If we assume this result for the moment, Theorem 4. 7 implies 
that f is continuous at every point x ¥= 0. 

MONOTONIC FUNCTIONS 

We shall now study those functions which never decrease (or never increase) on 
a given segment. 

4.28 Definition Let f be real on (a, b). Then f is said to be monotonically 
increasing on (a, b) if a< x < y < b implies f(x) ~f(y). If the last inequality 
is reversed, we obtain the definition of a monotonically decreasing function. The 
class of monotonic functions consists of both the increasing and the decreasing 
functions. 

4.29 Theorem Let f be monotonically increasing on (a, b). Then f(x+) and 
f(x-) exist at every point of x of (a, b). More precisely, 

(25) 

(26) 

sup f(t) =f(x-) ~f(x) ~f(x+) = inf f(t). 
a<t<x x<t<b 

F1,rthermore, if a < x < y < b, then 

f(x+) ~f(y-). 

Analogous results evidently hold for monotonically decreasing functions. 
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(27) 

(28) 

(29) 

(30) 

Proof By hypothesis, the set ofnumbersf(t), where a< t < x, is bounded 
above by the number f (x), and therefore has a least upper bound which 
we shall denote by A. Evidently A 5:.f(x). We have to show that 
A =f(x-). 

Let e > 0 be given. It follows from the definition of A as a least 
upper bound that there exists b > 0 such that a < x - b < x and 

A - e <f(x - b) 5:. A. 

Since f is monotonic, we have 

f (x - b) 5:. f (t) 5:. A (x - b < t < x). 

Combining (27) and (28), we see that 

lf(t) - A I < e (x - b < t < x). 

Hencef(x-) = A. -
The second half of (25) is proved in precisely the same way. 
Next, if a < x < y < b, we see from (25) that .. 

f(x+) = inf f(t) = inf f(t). 
x<t<b x<t<y 

The last equality is obtained by applying (25) to (a, y) in place of (a, b). 
Similarly, 

f(y-) = sup f(t) = sup f(t ). 
a<t<y x<t<y 

Comparison of (29) and (30) gives (26). 

Corollary Monotonic functions have no discontinuities of the second kind. 

This corollary implies that every monotonic function is discontinuous at 
a countable set of points at most. Instead of appealing to the general theorem 
whose proof is sketched in Exercise 17, we give here a simple proof which is 
applicable to monotonic functions. 

4.30 Theorem Let f be monotonic on (a, b). Then the set of points of (a, b) at 
which f is discontinuous is at most countable. 

Proof Suppose, for the sake of definiteness, that f is increasing, and 
let E be the set of points at which f is discontinuous. 

With every point x of E we associate a rational number r(x) such 
that 

f(x-) < r(x) <fix+). 
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Since x1 < x 2 implies f(x1 +) ~f(x2 - ), we see that r(x1) ¥= r(x2 ) if 
X1 :/: X2. 

We have thus established a 1-1 correspondence between the set E and 
a subset of the set of rational numbers. The latter, as we know, is count
able. 

4.31 Remark It should be noted that the discontinuities of a monotonic 
function need not be isolated. In fact, given any countable subset E of (a, b), 
which may even be dense, we can construct a function f, monotonic on (a, b), 
discontinuous at every point of E, and at no other point of (a, b). 

To show this, let the points of E be arranged in a sequence {xn}, 
n = I, 2, 3,.... Let {en} be a sequence of positive numbers such that I:cn 
converges. Define 

(31) f(x) = L Cn (a< x < b). 
Xn<x 

The summation is to be understood as follows: Sum over those indices n 
for which Xn < x. If there are no points Xn to the left of x, the sum is empty; 
following the usual convention, we define it to be zero. Since (31) converges 
absolutely, the order in which the terms are arranged is immaterial. 

We leave the verification of the following properties off to the reader: 

(a) f is monotonically increasing on (a, b); 
(b) f is discontinuous at every point of E; in fact, 

f(xn+) - f(xn-) =en• 

(c) f is continuous at every other point of (a, b). 

Moreover, it is not hard to see thatf{x-) =f(x) at all points of(a, b). If 
a function satisfies this condition, we say that f is continuous from the left. If 
the summation in (31) were taken over all indices n for which xn ~ x, we would 
havef(x+) = f(x) at every point of (a, b); that is, f would be continuous from 
the right. 

Functions of this sort can also be defined by another method; for an 
example we ref er to Theorem 6.16. 

INFINITE LIMITS AND LIMITS AT INFINITY 

To enable us to operate in the extended real number system, we shall now 
enlarge the scope of Definition 4.1, by reformulating i·t in terms of neighborhoods. 

For any real number x, we have already defined a neighborhood of x to 
be any segment (x - b, x + <5). 
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4.32 Definition For any real c, the set of real numbers x such that x > c is 
called a neighborhood of+ oo and is written (c, + oo ). Similarly, the set ( - oo, c) 
is a neighborhood of - oo. 

4.33 Definition Let f be a real function defined on E c R. We say that 

f(t) ➔ A as t ➔ x, 

where A and x are in the extended real number system, if for every neighborhood 
U of A there is a neighborhood V of x such that V n E is not empty, and such 
that/(t) e U for all t e V n E, t ¥= x. 

A moment's consideration will show that this coincides with Definition 
4.1 when A and x are real. 

The analogue of Theorem 4.4 is still true, and the proof offers nothing 
new. We state it, for the sake of completeness. 

4.34 Theorem Let f and g be defined on E c R. Suppose 

Then 
f(t) ➔ A, 

(a) f(t) ) A' implies A' = A. 
(b) (f + g)(t) ) A + B, 
(c) (fg)(t) ) AB, 
(d) (f /g)(t) ) A/B, 

as t ➔ x. 

provided the right members of (b), (c), and (d) are defined. 
Note that oo - oo, 0 · oo, 00/00, A/0 are not defined (see Definition 1.23). 

EXERCISES 

1. Suppose/ is a real function defined on R 1 which satisfies 

lim [/(x + h)-f(x- h)] =0 

for every x e R1
• Does this imply that f is continuous? 

2. If/ is a continuous mapping of a metric space X into a metric space Y, prove that 

/(E) cf(E) 

for every set E c X. (E denotes the closure of E.) Show, by an example, that 
/(E) can be a proper subset of f(E). 

3. Let /be a continuous real function on a metric space X. Let Z (/) (the zero set of/) 
be the set of all p e X at which /(p) = 0. Prove that Z(/) is closed. 

4. Let / and g be continuous mappings of a metric space X into a metric space Y, 
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and let Ebe a dense subset of X. Prove that f(E) is dense in f(X). If g(p) = f(p) 

for all p e E, prove that g(p) = f(p) for all p e X. (In other words, a continuous 
mapping is determined by its values on a dense subset of its domain.) 

5. If/ is a real continuous function defined on a closed set E c R 1
, prove that there 

exist continuous real functions g on R 1 such that g(x) = f(x) for all x e E. (Such 
functions g are called continuous extensions off from E to R 1 

.) Show that the 
result becomes false if the word ''closed'' is omitted. Extend the result to vector
valued functions. Hint: Let the graph of g be a straight line on each of the seg
ments which constitute the complement of E (compare Exercise 29, Chap. 2). 
The result remains true if R 1 is replaced by any metric space, but the proof is not 

so simple. 
6. If f is defined on E, the graph off is the set of points (x, /(x)), for x e E. In partic

ular, if Eis a set of real numbers, and/'is real-valued, the graph of /is a subset of 
the plane. 

Suppose E is compact, and prove that / is continuous on E if and only if 
its graph is compact. 

7. If E c X and if f is a function defined on X, the restriction off to E is the function 
g whose domain of definition is E, such that g(p) =f(p) for p e E. Define/and g 

on R 2 by: /(0, 0) = g(O, 0) = 0, j'(x, y) = xy2 /(x 2 + y 4
), g(x, y) = xy2 /(x2 + y 6

) 

if (x, y) i= (0, 0). Prove that / is bounded on R 2
, that g is unbounded in every 

neighborhood of (0, 0), and that f is not continuous at (0, O); nevertheless, the 
restrictions of both f and g to every straight line in R 2 are continuous! 

8. Let/' be a real uniformly continuous function on the bounded set E in R 1
• Prove 

that f is bounded on E. 
Show that the conclusion is false if boundedness of E is omitted from the 

hypothesis. 
9. Show that the requirement in the definition of uniform continuity can be rephrased 

as follows, in terms of diameters of sets: To every e > 0 there exists a 8 > 0 such 
that diam /(E) < e for all E c X with diam E < 8. 

10. Complete the details of the following alternative proof of Theorem 4.19: If f is not 
uniformly continuous, then for some e > 0 there are sequences {pn}, {qn} in X such 
that dx(Pn, qn) ► 0 but dy(f(pn),f(qn)) > e. Use Theorem 2.37 to obtain a contra
diction. 

11. Suppose f is a uniformly continuous mapping of a metric space X into a metric 
space Y and prove that {/(xn)} is a Cauchy sequence in Y for every Cauchy se
quence {xn} in X. Use this result to give an alternative proof of the theorem stated 
in Exercise 13. 

12. A uniformly continuous function of a uniformly continuous function is uniformly 
• continuous. 

State this more precisely and prove it. 
13. Let E be a dense subset of a metric space X, and let/' be a uniformly continuous 

real function defined on E. Prove that f has a continuous extension from E to X 
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(see Exercise S for terminology). (Uniqueness follows from Exercise 4.) Hint: For 
each p e X and each positive integer n, let Vn(p) be the set of all q e E with 
d(p, q) < l/n. Use Exercise 9 to show that the intersection of the closures of the 
sets /(V1(p)), /(V2(p)), ... , consists of a single point, say g(p), of R1. Prove that 
the function g so defined on X is the desired extension off. 

Could the range space R 1 be replaced by Rk? By any compact metric space? 
By any complete metric space? By any metric space? 

14. Let I = [O, 1] be the closed unit interval. Suppose/ is a continuous mapping of / 
into I. Prove that /(x) = x for at least one x e J. 

15. Call a mapping of X into Y open if/( V) is an open set in Y whenever Vis an open 
set in X. 

Prove that every continuous open mapping of R 1 into R1 is monotonic. 
16. Let [x] denote the largest integer contained in x, that is, [x] is the integer such 

that x - l < [x]:;;; x; and let (x) = x - [x] denote the fractional part of x. What 
discontinuities do the functions [x] and (x) have? 

17. Let/be a real function defined on (a, b). Prove that the set of points at which/ 
has a simple discontinuity is at most countable. Hint: I ... et E be the set on which 
f(x-) <f(x+ ). With each point x of E, associate a triple (p, q, r) of rational 
numbers such that 
(a) f(x-) < p <f(x+ ), 
(b) a< q < t < x implies/(t) <p, 
(c) x < t < r < b implies/(t) > p. 

The set of all such triples is countable. Show that each triple is associated with at 
most one point of E. Deal similarly with the other possible types of simple dis-

• • • cont1nu1t1es. 

18. Every rational x can be written in the form x = m/n, where n > 0, and m and n are 
integers without any common divisors. When x = 0, we take n = l. Consider the 
function f defined on R 1 by 

0 

f(x) = 1 
-
n 

(x irrational), 

m 
x=-. 

n 

Prove that f is continuous at every irrational point, and that f l1as a simple discon
tinuity at every rational point. 

19. Suppose / is a real function with domain R 1 which has the intermediate value 
property: If /(a)< c <f(b), then/(x) = c for some x between a and b. 

Suppose also, for every rational r, that the set of all x with/(x) = r is closed. 
Prove that f is continuous. 
Hint: If Xn ➔ Xo but f(xn) > r > f(xo) for some r and all n, then f(tn) = r 

for some In between Xo and x,.; thus tn ➔ Xo. Find a contradiction. (N. J. Fine, 
Amer. Math. Monthly, vol. 73, 1966, p. 782.) 
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20. If Eis a nonempty subset of a metric space X, define the distance from x e X to E 
by 

PE(x) = inf d(x, z). 
:reE 

(a) Prove that PE(x) = 0 if and only if x e E. 
(b) Prove that PE is a uniformly continuous function on X, by showing that 

I PE(x) - PE(Y) I =:;: d(x, y) 

for all x e X, ye X. 
Hint: pE(x) =:;: d(x, z) =:;: d(x, y) + d(y, z), so that 

PE(x) =:;: d(x, y) + pE(y). 

21. Suppose K and Fare disjoint sets in a metric space X, K is compact, Fis closed. 
Prove that there exists 8 > 0 such that d(p, q) > 8 if p e K, q e F. Hint: PF is a 
continuous positive function on K. 

Show that the conclusion may fail for two disjoint closed sets if neither is 
compact. 

22. Let A and B be disjoint nonempty closed sets in a metric space X, and define 

p,.(p) 
f(p) = p,.(p) + P s(p) (p E X). 

Show that/ is a continuous function on X whose range lies in [O, 1], that/(p) = 0 
precisely on A and/(p) = 1 precisely on B. This establishes a converse of Exercise 
3: Every closed set A c X is Z(f) for some continuous real / on X. Setting 

V = J- 1([0, ½)), w = 1-1((½, 1]), 

show that V and Ware open and disjoint, and that A c V, B c W. (Thus pairs of 
disjoint closed sets in a metric space can be covered by pairs of disjoint open sets. 
This property of metric spaces is called normality.) 

23. A real-valued function f defined in (a, b) is said to be convex if 

f( Ax+ (1 - ,\)y) =:;: ,\f(x) + (1 - ,\)/(y) 

whenever a < x < b, a < y < b, 0 < ,\ < 1. Prove that every convex function is 
continuous. Prove that every increasing convex function of a convex function is 
convex. (For example, if/ is convex, so is e1.) 

If /is convex in (a, b) and if a< s < t < u < b, show that 

f_(t_) _-_f(_s) f(u) - f(s) < f(u) - f(t) 
=:;:---_---. 

t-s u-s u-t 

24. Assume that f is a continuous real function defined in (a, b) such that 

I x + Y =:;: f(x) + f(y) 
2 2 

for all x, ye (a, b). Prove that/is convex. 
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25. If Ac Rt and B c Rt, define A+ B to be the set of all sums x + y with x e A, 
yeB. 
(a) If K is compact and C is closed in Rt, prove that K + C is closed. 

Hint: Take z ¢ K + C, put F= z- C, the set of all z- y with ye C. Then 
K and Fare disjoint. Choose 8 as in Exercise 21. Show that the open ball with 
center z and radius 8 does not intersect K + C. 
(b) Let oc be an irrational real number. Let C1 be the set of all integers, let C2 be 
the set of all noc with n E C1, Show that C1 and C2 are closed subsets of R1 whose 
sum CJ + C 2 is not closed, by showing that C 1 + C 2 is a countable dense subset 
of R1

• 

26. Suppose X, Y, Z are metric spaces, and Y is compact. Let f map X into Y, let 
g be a continuous one-to-one mapping of Y into Z, and put h(x) = g(/'(x)) for 
XE X. 

Prove that f is uniformly continuous if h is uniformly continuous. 
Hint: g- 1 has compact domain g( Y), and f(x) = g- 1(h(x)). 
Prove also that f is continuous if h is continuous. 
Show (by modifying Example 4.21, or by finding a different example) that 

the compactness of Y cannot be omitted from the hypotheses, even when X and 
Z are compact. 



DIFFERENTIATION 

In this chapter we shall (except in the final section) confine our attention to real 
functions defined on intervals or segments. This is not just a matter of con
venience, since genuine differences appear when we pass from real functions to 
vector-valued ones. Differentiation of functions defined on Rk will be discussed 
in Chap. 9. 

THE DERIVATIVE OF A REAL FUNCTION 

5.1 Definition Let/ be defined (and real-valued) on [a, b]. For any x e [a, b] 
form the quotient 

(1) 

and define 

(2) 

</>(t) = f(t) - f (x) 
t-x 

(a < t < b, t =F x), 

f'(x) = lim </>(t ), 
t➔x 
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provided this limit exists in accordance with Definition 4.1. 
We thus associate with the function f a function f' whose domain 

is the set of points x at which the limit (2) exists; f' is called the derivative 
off. 

If f' is defined at a point x, we say that f is differentiable at x. If f' is 
defined at every point of a set E c: [a, b], we say that/ is differentiable on E. 

It is possible to consider right-hand and left-hand limits in (2); this leads 
to the definition of right-hand and left-hand derivatives. In particular, at the 
endpoints a and b, the derivative, if it exists, is a right-hand or left-hand deriva
tive, respectively. We shall not, however, discuss one-sided derivatives in any 
detail. 

If f is defined on a segment (a, b) and if a< x < b, then f'(x) is defined 
by (1) and (2), as above. Butf'(a) and/'(b) are not defined in this case. 

5.2 Theorem Letf be defined on [a, b]. /ff is differentiable at a point x e [a, b], 
then f is continuous at x. 

Proof As t ➔ x, we have, by Theorem 4.4, 

f(t) - f(x) , 
f(t) - f (x) = --- • (t - x) > f (x) · 0 = 0. 

t-x 

The converse of this theorem is not true. It is easy to construct continuous 
functions which fail to be differentiable at isolated points. In Chap. 7 we shall 
even become acquainted with a function which is continuous on the whole line 
without being differentiable at any point! 

5.3 Theorem Suppose f and g are defined on [a, b] and are differentiable at a 
point x e [a, b]. Then/+ g, fg, and f/g are differentiable at x, and 

(a) (f + g)'(x) = f'(x) + g'(x); 

(b) (fg)'(x) = f'(x)g(x) + f(x)g'(x); 

(c) 
f '(x) = g(x)f'(x) - g'(x)f(x). 
g . g2(x) 

In (c), we assume of course that g(x) :I= 0. 

Proof (a) is clear, by Theorem 4.4. Leth = fg. Then 

h(t) - h(x) = f(t )[g(t) - g(x)] + g(x)[f(t) - f(x)]. 
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If we divide this by t - x and note that f(t) > f(x) as t > x (Theorem 5.2), 
(b) follows. Next, let h = f/g. Then 

h(t) - h(x) = 1 g(x)f(t) - f(x) _ f(x) g(t) - g(x) . 
t - X g(t )g(x) t - X t - X 

Letting t > x, and applying Theorems 4.4 and 5.2, we obtain (c). 

5.4 Examples The derivative of any constant is clearly zero. If/ is defined 
by f(x) = x, thenf'(x) = 1. Repeated application of (b) and (c) then shows that 
x 11 is differentiable, and that its derivative is nx11

-
1, for any integer n (if n < 0, 

we have to restrict ourselves to x :I= 0). Thus every polynomial is differentiable, 
and so is every rational function, except at the points where the denominator is 
zero. 

The following theorem is known as the ''chain rule'' for differentiation. 
It deals with differentiation of composite functions and is probably the most 
important theorem about derivatives. We shall meet more general versions of it 
in Chap. 9. 

5.5 Theorem Suppose f is continuous on [a, b],f'(x) exists at some point 
x E [a, b ], g is defined on an interval I tt-·hich contains the range off, and g is 
differentiable at the point f (x). If' 

h(t) = g(f(t)) (a~ t ~ b), 

then h is differentiable at x, and 

(3) h'(x) = g'(f(x))f'(x). 

Proof Let y = f (x). By the definition of the derivative, we have 

( 4) f(t) - f(x) = (t - x)[f'(x) + u(t )], 

(5) 

(6) 

g(s) - g(y) = (s - y)[g'(y) + v(s)], 

where t e [a, b], s e /, and u(t) ➔ 0 as t ➔ x, v(s) > 0 ass > y. Lets =f(t). 
Using first (5) and then ( 4), we obtain 

h(t) - h(x) = g(f(t )) - g(f (x)) 

= [f(t) - f(x)] · [g'(y) + v(s)] 

= (t - x) · [f'(x) + u(t )] · [g'(y) + v(s)], 
or, if t :I= x, 

h(t) - h(x) = [g'(y) + v(s)] · [f'(x) + u(t)]. 
t-x 

Letting t > x, we see that s > y, by the continuity· off, so that the right 
side of (6) tends to g'(y)f'(x), which gives (3). 
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5.6 Examples 

(7) 

(8) 

(9) 

(10) 

(11) 

(a) Let/ be defined by 

. 1 
X Slll-

f(x) = X 
(x :I= 0), 

0 (x = 0). 

Taking for granted that the derivative of sin x is cos x (we shall 
discuss the trigonometric functions in Chap. 8), we can apply Theorems 
5.3 and 5.5 whenever x -::/:, 0, and obtain 

'( ) . 1 1 1 f X = SID - - -COS -
X X X 

(x -::/:- 0). 

At x = 0, these theorems do not apply any longer, since 1/x is not defined 
there, and we appeal directly to the definition: for t :I= 0, 

f(t) - f(O) . 1 
---- = sin - . 

t- 0 t 

As t > 0, this does not tend to any limit, so that f'(O) does not exist. 
( b) Let f be defined by 

2 • 1 
X Slll-

f(x) = X 
(x :I= 0), 

0 (x = 0), 

As above, we obtain 

f'(x) = 2x sin_!_ - cos_!_ 
X X 

(x :I= 0). 

At x = 0, we appeal to the definition, and obtain 

f(t) - t(o) . 1 I I 1---- = t SID - ~ t 
t-0 t 

(t :I= O); 

letting t > 0, we see that 

f'(O) = 0. 

Thus f is differentiable at all points x, but f' is not a continuous 
function, since cos (1/x) in (10) does not tend to a limit as x > 0. 
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MEAN VALUE THEOREMS 

5.7 Definition Let/ be a real function defined on a metric space X. We say 
that/has a local maximum at a point p e X if there exists~ > 0 such thatf(q) ~ 
f(p) for all q e X with d(p, q) < ~-

Local minima are defined likewise. 
Our next theorem is the basis of many applications of differentiation. 

5.8 Theorem Let f be defined on [a, b]; if f has a local maximum at a point 
x e (a, b), and if f'(x) exists, thenj''(x) = 0. 

The analogous statement for local minima is of course also true. 

Proof Choose~ in accordance with Definition 5.7, so that 

a < x - ~ < x < x + ~ < b. 

If x - ~ < t < x, then 

f_(t_)_-_f(_x) ~ O. 
t-x 

Letting t > x, we see thatf'(x) ~ 0. 
If x < t < x + ~, then 

f(t) -f(x) 
0 ----~' t-x 

which shows that f '(x) ~ 0. Hence f'(x) = 0. 

5.9 Theorem If f and g are continuous real functions on [a, b] which are 
differentiable in (a, b), then there is a point x e (a, b) at a·hich 

(12) 

[f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x). 

Note that differentiability is not required at the endpoints. 

Proof Put 

h(t) = [f(b) - f(a)]g(t) - [g(b) - g(a)]f(t) (a~ t ~ b). 

Then h is continuous on [a, b], h is differentiable in (a, b), and 

h(a) = f(b)g(a) - f(a)g(b) = h(b). 

To prove the theorem, we have to show that h'(x) = 0 for some x e (a, b). 
If h is constant, this holds for every x e (a, b). If h(t) > h(a) for 

some t e (a, b), let x be a point on [a, b] at which h attains its maximum 
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(Theorem 4.16). By (12), x e (a, b), and Theorem 5.8 shows that h'(x) = 0. 
If h(t) < h(a) for some t e (a, b), the same argument applies if we choose 
for x a point on [a, b] where h attains its minimum. 

This theorem is often called a generalized mean value theorem; the following 
special case is usually referred to as ''the'' mean value theorem: 

5.10 Theorem If f is a real continuous function on [a, b] which is differentiable 
in (a, b), then there is a point x e (a, b) at which 

f(b) - f(a) = (b - a)f'(x). 

Proof Take g(x) = x in Theorem 5.9. 

5.11 Theorem Suppose f is dijj'erentiable in (a, b). 

(a) Jff'(x) ~ Ofor all x e (a, b), then/ is monotonically increasing. 

(b) Jff'(x) = Ofor all x e (a, b), then/ is constant. 

(c) If f'(x) ~ 0 for all x e (a, b), then f is monotonically decreasing. 

Proof All conclusions can be read off from the equation 

f(x2) - f(x1) = (x2 - X1)f'(x), 

which is valid, for each pair of numbers x1 , x 2 in (a, b), for some x between 
x1 and x2 • 

THE CONTINUITY OF DERir.ATIVES 

We have already seen [Example 5.6(b)] that a function/may have a derivative 
f' which exists at every point, but is discontinuous at some point. However, not 
every function is a derivative. In particular, derivatives which exist at every 
point of an interval have one important property in common with functions 
which are continuous on an interval: Intermediate values are assumed ( compare 
Theorem 4.23). The precise statement follows. 

5.12 Theorem Suppose f is a real differentiable function on [a, b] and suppose 
f'(a) < l <f'(b). Then there is a point x e (a, b) such that f'(x) = l. 

A similar result holds of course if f'(a) > f'(b). 

Proof Put g(t) = f(t) - lt. Then g'(a) < 0, so that g(t1) < g(a) for some 
t1 e (a, b), and g'(b) > 0, so that g(t2) < g(b) for some t2 e (a, b). Hence 
g attains its minimum on [a, b] (Theorem 4.16) at some point x such that 
a < x < b. By Theorem 5.8, g'(x) = 0. Hence f'(x) = l. 
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Corollary If f is differentiable on [a, b ], then f' cannot /1ave any simple dis
continuities on [a, b ]. 

But/' may very well have discontinuities of the second kind. 

L'HOSPITAL'S RULE 

The following theorem is frequently useful in the evaluation of limits. 

5.13 Theorem Suppose/ and g are real and differentiable in (a, b), and g'(x) =I= 0 
for all x e (a, b), where - oo ~a< b ~ + oo. Suppose 

(13) 

If 
(14) 

or if 
(15) 

then 

(16) 

f'(x) 
g'(x) -+> A as x > a. 

f (x) > 0 and g(x) > 0 as x > a, 

g(x) > + oo as x > a, 

f_(x_) -+ A as x > a. 
g(x) 

The analogous statement is of course also true if x > b, or if g(x) -+ - oo 
in (15). Let us note that we now use the limit concept in the extended sense of 
Definition 4.33. 

(17) 

(18) 

(19) 

Proof We first consider the case in which - oo ~ A < + oo. Choose a 
real number q such that A < q, and then choose r such that A < r < q. 
By (13) there is a point c e (a, b) such that a< x < c implies 

f'(x) 
g'(x) < r. 

If a< x < y < c, then Theorem 5.9 shows that there is a point t e (x, y) 
such that 

f(x) - f(y) f '(t) 
----=-<r. 
g(x) - g(y) g'(t) 

Suppose (14) holds. Letting x-+ a in (18), we see that 

f(y) < < 
g(y) - r q (a< y < c). 
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(20) 

(21) 

(22) 

Next, suppose (15) holds. Keeping y fixed in (18), we can choose 
a point c1 e (a, y) such that g(x) > g(y) and g(x) > 0 if a< x < c1. Multi
plying (18) by [g(x) - g(y)]/g(x), we obtain 

f(x) < r _ rg(y) +f(y) ( ) a< X < C1 . 
g(x) g(x) g(x) 

If we let x > a in (20), (15) shows that there is a point c2 e (a, c1) 

such that 

f(x) 
g(x) < q 

Summing up, (19) and (21) show that for any q, subject only to the 
condition A < q, there is a point c2 such thatf(x)/g(x) < q if a< x < c2 . 

In the same manner, if - oo < A ~ + oo, and p is chosen so that 
p < A, we can find a point c3 such that 

f(x) 
p < - (a < X < C3), 

g(x) 

and (16) follows from these two statements. 

DERIVATIVES OF HIGHER ORDER 

5.14 Definition If/has a derivative/' on an interval, and if/' is itself differen
tiable, we denote the derivative off' by f '' and call/'' the second derivative off 
Continuing in this manner, we obtain functions 

f,f',f'',/( 3 >, · · · ,f(n), 

each of which is the derivative of the preceding one. J<n> is called the nth deriva
tive, or the derivative of order n, off 

In order for J<n> (x) to exist at a point x,f<n-l) (t) must exist in a neighbor
hood of x ( or in a one-sided neighborhood, if x is an endpoint of the interval 
on which f is defined), and J<n - i > must be differentiable at x. Since J<n- i > must 
exist in a neighborhood of x,J<n- 2> must be differentiable in that neighborhood. 

TAYLOR'S THEOREM 
-

5.15 Theorem Suppose f is a real function on [a, b ], n is a positive integer, 
J<n-l) is continuous on [a, b],f<n>(t) exists for every t e (a, b). Let tx, P be distinct 
points of [a, b ], and define 

n-1/(k)(tx) 
(23) P(t) = L -- (t - tx)k. 

k=O k! 
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Then there exists a point x between IX and /3 such that 

(24) 
n. 

For n = 1, this is just the mean value theorem. In general, the theorem 
shows that f can be approximated by a polynomial of degree n - 1, and that 
(24) allows us to estimate the error, if we know bounds on lf<n>(x) I• 

(25) 

(26) 

(27) 

Proof Let M be the number defined by 

f(/3) = P(/3) + M(/3 - 1X)n 

and put 

g(t) =f(t) -P(t) - M(t - 1X)n (a~ t ~ b). 

We have to show that n !M = f<n>(x) for some x between IX and /3. By 
(23) and (26), 

(a< t < b). 

Hence the proof will be complete if we can show that g<n>(x) = 0 for some 
x between IX and f3. 

Since p<k>(IX) = [<k>(IX) fork= 0, ... , n - 1, we have 

(28) g(IX) = g'(IX) = ''' = g<n-l)(IX) = 0. 

Our choice of M shows that g(/3) = 0, so that g'(x1) = 0 for some x1 

between IX and /3, by the mean value theorem. Since g 1(1X) = 0, we conclude 
similarly that g''(x2) = 0 for some x 2 between IX and x1. After n steps we 
arrive at the conclusion that g<n>(xn) = 0 for some Xn bet ween IX and Xn _ 1 , 

that is, between IX and /3. 

DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS 

5.16 Remarks Definition 5.1 applies without any change to complex functions 
f defined on [a, b], and Theorems 5.2 and 5.3, as well as their proofs, remain 
valid. If / 1 and/2 are the real and imaginary parts of I, that is, if 

f(t) = li(t) + if2(t) 

for a~ t ~ b, where/1(t) and/2(t) are real, then we clearly have 

(29) f'(x) = f{(x) + ifi(x); 

also, f is differentiable at x if and only if both / 1 and / 2 are differentiable at x. 
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Passing to vector-valued functions in general, i.e., to functions f which 
map [a, b] into some Rk, we may still apply Definition 5.1 to define f'(x). The 
term <p(t) in (1) is now, for each t, a point in Rk, and the limit in (2) is taken with 
respect to the norm of Rk. In other words, f'(x) is that point of Rk (if there is 
one) for which 

(30) lim f(t) - f(x) - f'(x) = 0, 
t➔ x t - X 

and f' is again a function with values in Rk. 
If / 1 , •.. , fk are the components off, as defined in Theorem 4.10, then 

(31) f' = (/{, ... ,/;), 
and f is differentiable at a point x if and only if each of the functions / 1 , ••• , h 
is differentiable at x. 

Theorem 5.2 is true in this context as well, and so is Theorem 5.3(a) and 
{b), if Jg is replaced by the inner product f · g (see Definition 4.3). 

When we turn to the mean value theorem, however, and to one of its 
consequences, namely, L'Hospital's rule, the situation changes. The next two 
examples will show that each of these. results fails to be true for complex-valued 
functions. 

5.17 Example Define, for real x, 

(32) f(x) = eix = cos x + i sin x. 

{The last expression may be taken as the definition of the complex exponential 
eix; see Chap. 8 for a full discussion of these functions.) Then 

(33) 

but 

(34) 

f(2n) - /(0) = 1 - 1 = 0, 

f'(x) = ieix, 

so that 1/'(x) I = 1 for all real x. 
Thus Theorem 5.10 fails to hold in this case. 

5.18 Example On the segment (0, 1), define/(x) = x and 

(35) g(x) = x + x 2eilx
2

• 

Since I eit I = 1 for all real t, we see that 

(36) lim f(x) = 1. 
x➔O g(x) 



Next, 

(37) 

so that 

(38) 

Hence 

(39) 

and so 

(40) 

g'(x) = 1 + 2 2i i/x2 x-- e 
X 

(0 < X < 1), 

lu'(x) I ~ 2i 
2x-

x 
2 

-1~--1. 
X 

/'(x) 1 X =--~--
g'(x) lu'(x) I 2 - x 

lim f'(x) = 0. 
x➔ o g'(x) 
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By (36) and ( 40), L'Hospital's rule fails in this case. Note also that g'(x) ¥: 0 
on (0, 1 ), by (38). 

However, there is a consequence of the mean value theorem which, for 
purposes of applications, is almost as useful as Theorem 5.10, and which re
mains true for vector-valued functions: From Theorem 5.10 it follows that 

(41) IJ(b) -f(a) I ~ (b - a) sup 1/'(x) 1-
a<x<b 

5.19 Theorem Suppose f is a continuous mapping of [a, b] into Rk and f is 
differentiable in (a, b). Then there exists x E (a, b) such that 

jf(b) - f(a)I ~ (b - a)lf'(x)I. 

Proof1 Putz = f(b) - f(a), and define 

<p( t ) = z • f( t) ( a ~ t ~ b). 

Then <p is a real-valued continuous function on [a, b] which is differentia
ble in (a, b). The mean value theorem shows therefore that 

<p(b) - <p(a) = (b - a)<p'(x) = (b ·- a)z · f'(x) 

for some x E (a, b). On the other hand, 

<p( b) - <p( a) = z · f( b) - z · f( a) = z · z = I z I 2• 

The Schwarz inequality now gives 

I z I 2 = ( b - a) I z · f' ( x) I ~ ( b - a) I z I I f' ( x) I . 

Hence lzl ~ (b - a)lf'(x)I, which is the desired conclusion. 

1 V. P. Havin translated the second edition of this book into Russian and added this 
proof to the original one. 
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EXERCISES 

1. Let/ be defined for all real x, and suppose that 

lf(x) - f(y) I ~ (x - Y) 2 

for all real x and y. Prove that/ is constant. 
2. Suppose/'(x) > 0 in (a, b). Prove that/is strictly increasing in (a, b), and let g be 

its inverse function. Prove that g is differentiable, and that 

(a< x < b). 

3. Suppose g is a real function on R 1
, with bounded derivative (say I g' I ~ M). Fix 

e > 0, and define/(x) = x + eg(x). Prove that/is one-to-one if e is small enough. 
(A set of admissible values of e can be determined which depends only on M.) 

4. If 

Co+ C1 +···+ Cn-1 + Cn =0, 
2 n n+l 

where Co, ... , Cn are real constants, prove that the equation 

Co+ Cix + · · · + Cn-ixn-i + Cnxn = 0 

has at least one real root between O and 1. 
5. Suppose/is defined and differentiable for every x > 0, and/'(x) ► 0 as x ► + oo. 

Put g(x) =f(x + 1)- /(x). Prove that g(x) ► 0 as x ► + oo. 
6. Suppose 

(a) f is continuous for x ~ 0, 
(b) f'(x) exists for x > 0, 
(c) /'(O) = 0, 
(d) f' is monotonically increasing. 
Put 

g(x) =f(x) 
X 

and prove that g is monotonically increasing. 

(x >0) 

7. Suppose /'(x), g'(x) exist, g '(x) -=I= 0, and /(x) = g(x) = 0. Prove that 

lim /(t) =/'(x). 
r ➔ x g(t) g'(x) 

{This holds also for complex functions.) 
8. Suppose/' is continuous on [a, b] and e > 0. Prove that there exists 8 > 0 such 

that 

f(t) - f(x) _ f'(x) < 8 
t-x 
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whenever O < It - x I < 8, a :::;: x :::;: b, a :::;: t :::;: b. (This could be expressed by 
saying that/is uniformly differentiable on [a, b] if/' is continuous on [a, b].) Does 
this hold for vector-valued functions too? 

9. Let f be a continuous real function on R1
, of which it is known that f'(x) exists 

for all x -=I= 0 and that f'(x) ► 3 as x ► 0. Does it follow that /'(O) exists? 
10. Suppose/ and g are complex differentiable functio son (0, 1),/(x) ► 0, g(x) ► 0, 

f'(x) ► A, g'(x) · ► Bas x ► 0, where A and Bare c mplex numbers, B -=I= 0. Prove 
that 

lim/(x) = ~
x➔ o g(x) B 

Compare with Example S.18. Hint: 

f(x) = f(x) _ A 
g(x) X 

• X +A· X. 
g(x) g(x) 

Apply Theorem S.13 to the real and imaginary parts of f(x)/x and g(x)/x. 

11. Suppose/is defined in a neighborhood of x, and suppose/''(x) exists. Show that 

l. f(x + h) + f(x - h) - 2/(x) = f''( ) 
1m h2 x . 

11 ➔ 0 

Show by an example that the limit may exist even if fn(x) does not. 
Hint: Use Theorem S.13. 

12. If f(x) =Ix I 3, compute f'(x), fn(x) for all real x, and show that /< 3 >(0) does not 
exist. 

13. Suppose a and c are real numbers, c > 0, and f is defined on [ - 1, 1] by 

x• sin (lxl-c) 
f(x) = 

0 

Prove the following statements: 
(a) f is continuous if and only if a > 0. 
(b) /'(O) exists if and only if a> 1. 
(c) f' is bounded if and only if a~ 1 + c. 
(d) f' is continuous if and only if a> 1 + c. 

(e) fn(O) exists if and only if a> 2 + c. 

(/) fn is bounded if and only if a ~ 2 + 2c. 
(g) f n is continuous if and only if a > 2 + 2c. 

(if X -=/= 0), 

(if X = 0). 

14. Let f be a differentiable real function defined in (a, b). Prove that f is convex if 
and only if /' is monotonically increasing. Assume next that f''(x) exists for 
every x e (a, b), and prove that/is convex if and only if /''(x) ~ 0 for all x e (a, b). 

15. Suppose a e R1
, /is a twice-differentiable real function on (a, oo ), and Mo, Mi, M2 

are the least upper bounds of 1/(x} I, l/'(x) I, lf''(x) I, respectively, on (a, oo ). 
Prove that 

Mf:::;: 4Mo M2. 
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Hint: If h > 0, Taylor's theorem shows that 

f'(x) = ;h [f(x + 2h) - /(x)] - h/''(f) 

for some f e (x, x + 2h). Hence 

1/'(x) I s hM2 + : 0 
• 

To show that Mf = 4MoM2 can actually happen, take a= -1, define 

2x2 -1 

f(x) = x 2 - 1 

x2 + 1 

(-1 < X < 0), 

(0 S X < oo), 

and show that Mo= 1, M1 = 4, M2 = 4. 
Does Mf s 4M o M 2 hold for vector-valued functions too? 

16. Suppose f is twice-differentiable on (0, oo ), /'' is bounded on (O, oo ), and /(x) > O 
as x ► oo. Prove that f'(x) ► 0 as x ► oo. 

Hint: Let a ► oo in Exercise 15. 
17. Suppose f is a real, three times differentiable function on [-1, l], such that 

/(-1) =0, /(0) =0, /(1) = 1, /'(O) = 0. 

Prove that/<3>(x) ~ 3 for some x e (-1, 1). 
Note that equality holds for !(x3 + x 2

). 

Hint: Use Theorem 5.15, with oc = 0 and /3 = ± 1, to show that there exist 
s e (0, 1) and t e (-1, 0) such that 

/< 3 >(s) + /< 3>(t) = 6. 

18. Suppose f is a real function on [a, b], n is a positive integer, and /<n- 1> exists for 
every t e [a, b]. Let oc, /3, and P be as in Taylor's theorem (5.15). Define 

Q(t) = f(t)- f(/3) 
t- /3 

for t e [a, b ], t -=I= {3, differentiate 

f(t) - f(/3) = (t - /3)Q(t) 

n - 1 times at t = oc, and derive the following version of Taylor's theorem: 

Q<n-t>(oc) 
f(/3) = P(/3) + (n - 1) ! (/3 - oc)n, 

19. Suppose I is defined in (-1, 1) and /'(0) exists. Suppose -1 < °'n < /3n < 1, 
ocn ► 0, and /3n ► 0 as n · ► oo. Define the difference quotients 
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Prove the following statements: 
(a) If 1Xn < 0 < fJn, then lim Dn = f'(O). 
(b) If O < 1Xn < f3n and {{Jn/(fJn - 1Xn)} is bounded, then lim Dn = f'(O). 
(c) If/' is continuous in (-1, 1), then lim Dn = f'(O). 

Give an example in which/is differentiable in (-1, 1) (but/' is not contin
uous at 0) and in which IXn , fJn tend to O in such a way that lim Dn exists but is differ

ent from /'(0). 
20. Formulate and prove an inequality which follows from Taylor's theorem and 

which remains valid for vector-valued functions. 
21. Let E be a closed subset of Ri. We saw in Exercise 22, Chap. 4, that there is a 

real continuous function/ on Ri whose zero set is E. Is it possible, for each closed 
set E, to find such an / which is differentiable on Ri, or one which is n times 
differentiable, or even one which has derivatives of all orders on Ri? 

22. Suppose f is a real function on ( - oo, oo ). Call x a fixed point off if f(x) = x. 
(a) If /is differentiable and/'(t) cf=. 1 for every real t, prove that/has at most one 
fixed point. 
(b) Show that the function/ defined by 

J(t) = t + (1 + er)-i 

has no fixed point, although O </'(t) < 1 for all real t. 
(c) However, if there is a constant A < 1 such that 1/'(t) I ~ A for all real t, prove 
that a fixed point x of/ exists, and that x = lim Xn, where Xi is an arbitrary real 
number and 

Xn+1 =f(Xn) 

for n = 1, 2, 3, .... 
(d) Show that the process described in (c) can be visualized by the zig-zag path 

23. The function f defined by 

f(x) = x3 + 1 
3 

has three fixed points, say IX, {J, y, where 

-2<1X<-l 
' 

0 < fJ < 1, 1 < y < 2. 

For arbitrarily chosen Xi, define {xn} by setting Xn + i = f(xn), 
(a) If Xi < IX, prove that Xn ► - oo as n ► oo. 
(b) If IX< Xi< y, prove that Xn ► fJ as n ► oo. 
(c) If y < Xi, prove that Xn ► + oo as n ► oo. 
Thus fJ can be located by this method, but IX and y cannot. 
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24. The process described in part (c) of Exercise 22 can of course also be applied to 
functions that map (O, oo) to (0, oo ). 

Fix some oc > 1, and put 

1 oc 
f(x) = 

2 
X +-

x' 
oc + X 

g(x) = 1 + x· 

Both f and g have v; as their only fixed point in (O, oo ). Try to explain, on the 
basis of properties off and g, why the convergence in Exercise 16, Chap. 3, is so 
much more rapid than it is in Exercise 17. (Compare/' and g ', draw the zig-zags 
suggested in Exercise 22.) 

Do the same when O < oc < 1. 
25. Suppose f is twice differentiable on [a, b], f(a) < 0, f(b) > 0, f'(x) ~ 8 > 0, and 

0 ~f''(x) ~ M for all x E [a, b]. Let g be the unique point in (a, b) at which 
f(f) = 0. 

Complete the details in the following outline of Newton's method for com
puting f. 
(a) Choose X1 E (f, b), and define {xn} by 

f(xn) 
Xn+l = Xn - f'(Xn) • 

Interpret this geometrically, in terms of a tangent to the graph off. 
(b) Prove that Xn+l < Xn and that 

lim Xn = g, 
n-o oo 

(c) Use Taylor's theorem to show that 

f''(tn) 2 

Xn+l - f = 2/'(Xn) (Xn - f) 

for some tn E (f, Xn), 

(d) If A= M/28, deduce that 

0 ~ Xn+l - f ~ 1 [A(X1 - f)] 2
n. 

(Compare with Exercises 16 and 18, Chap. 3.) 
(e) Show that Newton's method amounts to finding a fixed point of the function 

g defined by 

f(x) 
g(x) = x - f'(x) . 

How does g '(x) behave for x near f? 
(/) Put/(x) =x113 on (-oo, oo) and try Newton's method. What happens? 
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26. Suppose/ is differentiable on [a, b], f(a) = 0, and there is a real number A such 
that lf'(x) I s A lf(x) I on [a, b]. Prove that f(x) = 0 for all x E [a, b]. Hint: Fix 
Xo E [a, b], let 

Mo= sup! f(x)I, M1 = sup IJ'(x) I 
for as x s Xo. For any such x, 

lf(x) I s M1(Xo - a) s A(xo - a)Mo. 

Hence Mo = 0 if A(xo - a) < 1. That is,/= 0 on [a, Xo], Proceed. 
27. Let</> be a real function defined on a rectangle R in the plane, given by as x s b, 

ex sy < {3. A solution of the initial-value problem 

y' = cp(x, y), y(a) = c (ex s cs /3) 
is, by definition, a differentiable function/ on [a, b] such that/(a) = c, ex s/(x) s /3, 
and 

f'(x) = cp(x, f(x)) (a<xsb). 

Prove that such a problem has at most one solution if there is a constant A such 
that 

I </>(x, Y2) - cp(x, Y1) I s A I Y2 - Y1 I 
whenever (x, Y1) ER and (x, Y2) E R. 

Hint: Apply Exercise 26 to the difference of two solutions. Note that this 
uniqueness theorem does not hold for the initial-value problem 

y' = yl/2, y(O) = 0, 

which has two solutions: f(x) = 0 and/(x) = x 2/4. Find all other solutions. 
28. Formulate and prove an analogous uniqueness theorem for systems of differential 

equations of the form 

Y.1 = </>1(X, Y1, • • • , Yk), 

Note that this can be rewritten in the form 

y' = <l>(x, y), 

(j = 1, ... , k). 

y(a) = C 

where y = (Y1, ... , yk) ranges over a k-cell, <I> is the mapping of a (k + 1)-cell 
into the Euclidean k-space whose components are the functions c/>1, ... , <pk, and c 
is the vector (c1, ... , ck), Use Exercise 26, for vector-valued functions. 

29. Specialize Exercise 28 by considering the system 

' Y1=Y1+1 (j = 1, ... , k - 1 ), 
k 

Y~ = f(x) - L 01(x)y1, 
J=l 

where/, 01, ... , Ok are continuous real functions on [a, b], and derive a uniqueness 
theorem for solutions of the equation 

y<k> + Ok(x)y<k-t> + · · · + 02(x)y' + 01(x)y =f(x), 

subject to initial conditions 

y(a) = C1, y'(a) = C2, . . . ' 



THE RIEMANN-STIELTJES INTEGRAL 

The present chapter is based on a definition of the Riemann integral which 
depends very explicitly on the order structure of the real line. Accordingly, 
we begin by discussing integration of real-valued functions on intervals. Ex
tensions to complex- and vector-valued functions on intervals follow in later 
sections. Integration over sets other than intervals is discussed in Chaps. 10 
and 11. 

DEFINITION AND EXISTENCE OF THE INTEGRAL 

6.1 Definition Let [a, b] be a given interval. By a partition P of [a, b] we 
mean a finite set of points x0 , x1 , •.• , Xn, where 

We write 

Ax,= x, - x,-1 (i=1, ... ,n). 
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Now suppose f is a bounded real function defined on [a, b ]. Corresponding to 
each partition P of [a, b] we put 

and finally 

(1) 

(2) 

M 1 = supf(x) 

m, = inff(x) 
n 

U(P,f) = L M, Ax,' 
i= 1 

n 

L(P,f) = L m 1 dx1, 
i= 1 

-b 

(X,-1 S XS X1), 

(Xi-1 S XS X1), 

f dx = inf U(P,f), 
a 

b 

f dx = sup L(P,f), 
_a 

where the inf and the sup are taken over all partitions P of [a, b]. The left 
members of (1) and (2) are called the upper and lower Riemann integrals off 
over [a, b], respectively. , 

If the upper and lower integrals are equal, we say that f is Riemann
integrable on [a, b], we write f E f!A (that, is, f!A denotes the set of Riemann
integrable functions), and we denote the common value of (1) and (2) by 

b 

(3) fdx, 
a 

or by 

b 

(4) f(x) dx. 
a 

This is the Riemann integral off over [a, b]. Since f is bounded, there 
exist two numbers, m and M, such that 

msf(x)sM (as x s b). 

Hence, for every P, 

m(b - a) s L(P,f) s U(P,f) s M(b - a), 

so that the numbers L(P,f) and U(P,f) form a bounded set. This shows that 
the upper and lower integrals are defined for every bounded function f The 
question of their equality, and hence the question of the integrability off, is a 
more delicate one. Instead of investigating it separately for the Riemann integral, 
we shall immediately consider a more general situation. 
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6.2 Definition Let ~ be a monotonically increasing function on [a, b] (since 
~(a) and ~(b) are finite, it follows that~ is bounded on [a, b]). Corresponding to 
each partition P of [a, b ], we write 

Li~t = ~(X1) - ~(X1-1), 

It is clear that a~,~ 0. For any real function f which is bounded on [a, b] 
we put 

n 

u(P,f, ~) = I M1 a~,, 
I= 1 

n 

L(P,f, ~) = L m, a~i' 
i= 1 

where M 1, m 1 have the same meaning as in Definition 6.1, and we define 

-b 

(5) f d~ = inf U(P,f, ~), 
a 

b 

(6) f d~ = sup L(P,f, ~), 
_a 

the inf and sup again being taken over all partitions. 
If the left members of (5) and (6) are equal, we denote their common 

value by 

b 

(7) fd~ 
a 

or sometimes by 

(8) 
a 

This is the Riemann-Stieltjes integral ( or simply the Stieltjes integral) of 
/with respect to~, over [a, b]. 

If (7) exists, i.e., if (5) and (6) are equal, we say that f is integrable with 
respect to ~, in the Riemann sense, and write f e Bl(~). 

By taking ~(x) = x, the Riemann integral is seen to be a special case of 
the Riemann-Stieltjes integral. Let us mention explicitly, however, that in the 
general case ~ need not even be continuous. 

A few words should be said about the notation. We prefer (7) to (8), since 
the letter x which appears in (8) adds nothing to the content of (7). It is im
material which letter we use to represent the so-called ''variable of integration." 
For instance, (8) is the same as 

a 
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The integral depends on f, ix, a and b, but not on the variable of integration, 
which may as well be omitted. 

The role played by the variable of integration is quite analogous to that 
of the index of summation: The two symbols 

mean the same thing~ since each means c1 + c2 + · · · +en. 
Of course, no harm is done by inserting the variable of integration, and 

in many cases it is actually convenient to do so. 
We shall now investigate the existence of the integral (7). Without saying 

so every time,fwill be assumed real and bounded, and ix monotonically increas-

ing on [a, b]; and, when there can be no misunderstanding, we shall write in 
b 

place of . 
a 

6.3 Definition We say that the partition P* is a refinenzent of P if P* =:, P 
( that is, if every point of P is a point of P *). Given two partitions, P 1 and P 2 , 

we say that P* is their common refinement if P* = P1 u P2 . 

6.4 Theorem If P* is a refinement of P, then 

(9) 
and 
(10) 

L(P,f, ix)~ L(P*,f, ix) 

U(P*,f, ix)~ U(P,f, ix). 

Proof To prove (9), suppose first that P* contains just one point more 
than P. Let this extra point be x•, and suppose xi-l < x• < x1, where 
xi-l and x, are two consecutive points of P. Put 

w1 = inff(x) 

W2 = inff(x) 

(xi-i ~ x ~ x*), 

(x• ~ x ~ x 1). 

Clearly w1 ~ mi and w2 ~ mi, where, as before, 

mi= inff(x) 
Hence 

L(P*,f, ix) - L(P,f, ix) 

= w1[ix(x*) - ix(xi_ 1)] + w2 [oc(xi) - ix{x*)] - mi[ix(xi) - ix(x,_ 1)] 

= (w1 - m1)[oc(x*) - ix(x,_ 1)] + (w2 - mi)[ix(x1) - ix(x*)] ~ 0. 

If P• contains k points more than P, we repeat this reasoning k 
times, and arrive at (9). The proof of (10) is analogous. 
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b -b 

6.S Theorem f da. ~ f da.. 

(11) 

(12) 

_a a 

Proof Let P* be the common refinement of two partitions P 1 and P 2 • 

By Theorem 6.4, 

L(P1,f, a.)~ L(P*,f. a.)~ U(P*,f, a.)~ U(P2 ,f, a.). 

Hence 

If P 2 is fixed and the sup is taken over all P1, (11) gives 

f da. ~ U(P2 ,f, a.). 
-

The theorem follows by taking the inf over all P2 in (12). 

6.6 Theorem f e af(a.) on [a, b] if and only if for every 8 > 0 there exists a 
partition P such that 

(13) 

(14) 

(15) 

U(P,f, a.) - L(P,f, a.) < 8. 

Proof For every P we have 

-
L(P,f, a.)~ f da. ~ f da. ~ U(P,f, a.). 

-
Thus (13) implies 

-
0 ~ f da. - f da. < 8. 

-
Hence, if (13) can be satisfied for every 8 > 0, we have 

-
f da. = f da., 

-
that is, f e af(a.). 

Conversely, suppose f e af(a.), and let e > 0 be given. Then there 
exist partitions P1 and P2 such that 
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We choose P to be the common refinement of P 1 and P2 • Then Theorem 
6.4, together with (14) and (15), shows that 

B 
U(P,f, oc) ~ U(P2 ,f, oc) < f doc + 2 < L(P1,f, oc) + e ~ L(P,f, oc) + e, 

so that (13) holds for this partition P. 

Theorem 6.6 furnishes a convenient criterion for integrability. Before we 
apply it, we state some closely related facts. 

6.7 Theorem 
(a) I/(13) holds for some P and some e, then (13) holds (with the same e) 

for every refinement of P. 
(b) If (13) holds for P = {x0 , ••• , xn} and if si, ti are arbitrary points in 

[xi-i, xi], then 
n 

L lf(si)-f(ti)I Lioci<e. 
i= 1 

(c) If fe al(oc) and the hypotheses of(b) hold, then 

n b 

L f(t i) Lioci - f doc < e. 
i= 1 a 

Proof Theorem 6.4 implies (a). Under the assumptions made in (b), 
both/(si) andf(ti) lie in [mi, Mi], so that f(si) - f(t,)I ~ M, - mi. Thus 

n 

I lf(s,) - f(t ,) I Lioci ~ U(P,f, oc) - L(P,f, oc), 
i= 1 

which proves (b). The obvious inequalities 

L(P,f, oc) ~ Lf(ti) Lioci ~ U(P,f,oc) 
and 

L(P,f, oc) ~ J f doc~ U(P,f, oc) 
prove (c). 

6.8 Theorem If f is continuous on [a, b] thenfe al(oc) on [a, b]. 

(16) 

Proof Let e > 0 be given. Choose 17 > 0 so that 

[oc(b) - oc(a)]17 < e. 

Since f is uniformly continuous on [a, b] (Theorem 4.19), there exists a 
J > 0 such that 

lf(x) - f(t)I < 11 
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ifxe[a,b], te[a,b],and Ix-ti <b. 
If P is any partition of [a, b] such that Axi < b for all i, then {16) 

implies that 
(17) (i-1, ... ,n) 

and the ref ore 
n 

U(P,f, oc) - L(P,f, oc) = L (Mi - mi) ll.oc, 
i= 1 

n 

~ 'IL ll.oci = 17[oc(b) - oc(a)] < e. 
i= 1 

By Theorem 6.6, f e rJt(oc). 

6.9 Theorem If f is monotonic on [a, b ], and if oc is continuous on [a, b ], then 
f e fJt(oc). (We still assume, of course, that oc is monotonic.) 

Proof Let e > 0 be given. For any positive integer n, choose a partition 
such that 

ll.oci = oc(b) - oc(a) 
n 

(i = 1, ... , n). 

This is possible since oc is continuous {Theorem 4.23). 
We suppose that/is monotonically increasing (the proof is analogous 

in the other case). Then 

(i = 1, ... , n), 
so that 

oc(b) - oc(a) n 
U(P,f, oc) - L(P,f, oc) = --- L [f(x,) - f(xi-1)] 

n i= 1 

= oc(b) - oc(a). [f(b) - /(a)] < e 
n 

if n is taken large enough. By Theorem 6.6,f e fJt(oc). 

6.10 Theorem Suppose f is bounded on [a, b], f has only finitely many points 
of discontinuity on [a, b ], and oc is continuous at every point at which f is discon
tinuous. Then f e rJt(oc). 

Proof Let e > 0 be given. Put M = sup ]/(x) J , let E be the set of points 
at which f is discontinuous. Since E is finite and oc is continuous at every 
point of E, we can cover E by finitely many disjoint intervals [u1 , v1] c 

[a, b] such that the sum of the corresponding differences oc(v1) - oc(u1) is 
less than e. Furthermore, we can place these intervals in such a way that 
every point of E ri (a, b) lies in the interior of some [u1 , v1]. 
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Remove the segments (ui, vi) from [a, b]. The remaining set K is 
compact. Hence f is uniformly continuous on K, and there exists ~ > 0 
such that lf(s) -f(t)I < e ifs e K, t e K, Is - ti < ~-

Now form a partition P = {x0 , x1, ••• , xn} of [a, b], as follows: 
Each ui occurs in P. Each vi occurs in P. No point of any segment (ui, vi) 
occurs in P. If xi-i is not one of the ui, then fl.xi<~-

Note that Mi - mi~ 2M for every i, and that Mi - mi~ e unless 
xi-i is one of the ui. Hence, as in the proof of Theorem 6.8, 

U(P,f, oc) - L(P,f, oc) ~ [oc(b) - a(a)]e + 2Me. 

Since e is arbitrary, Theorem 6.6 shows that/ e af(oc). 
Note: If f and oc have a common point of discontinuity, then/ need not 

be in al( a). Exercise 3 shows this. 

6.11 Theorem Suppose f e af(a) on [a, b], m ~f ~ M, </> is continuous on 
[m, M], and h(x) = </>(f(x)) on [a, b]. Then he af(a) on [a, b]. 

(18) 

(19) 

Proof Choose e > 0. Since </> is uniformly continuous on [m, M], there 
exists ~ > 0 such that ~ < e and I q,(s) - </>(t) I < e if Is - t I ~ ~ and 
s, t E [m, M]. 

Since/ e af(a), there is a partition P = {x0 , x1 , ... , xn} of [a, b] such 
that 

U(P,f, a) - L(P,f, a) < ~2
• 

Let M,, mi have the same meaning as in Definition 6.1, and let Mt, mt 
be the analogous numbers for h. Divide the numbers 1, ... , n into two 
classes: i e A if Mi - mi<~, i e B if Mi - mi~~-

For i e A, our choice of~ shows that Mi* - mt'~ e. 
For i e B, Mi* - mt'~ 2K, where K = sup I </>(t)I, m ~ t ~ M. By 

(18), we have 

~ L fl.ai ~ L (Mi - mi) fl.oci < ~2 

ieB ieB 

so that I, eB fl.ai < ~- It follows that 

U(P, h, a)- L(P, h, a)= I (M:' - mi) fl.oci + L (Mt - mi) fl.oci 
ieA ieB 

~ e[a(b) - a(a)] + 2K~ < e[oc(b) - a(a) + 2K]. 

Since e was arbitrary, Theorem 6.6 implies that he af(a). 
Remark: This theorem suggests the question: Just what functions are 

Riemann-integrable? The answer is given by Theorem l l .33(b). 
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PROPERTIES OF THE INTEGRAL 

6.12 Theorem 
(a) If f1 e af(oc) andf2 E af(oc) on [a, b], then 

fi + f2 E af(oc), 

cf e af(oc) for every constant c, and 

b b 

(f1 + f 2) da = f1 doc + f 2 doc, 
a a a 

b b 
cf doc = c f doc. 

a a 

(b) /f fi(x) ~f2(x) on [a, b], then 

a a 

(c) If f e af(oc) on [a, b] and if a< c < b, then f e Bt'(oc) on [a, c] and on 
[c, b], and 

C b b 
f doc + f doc = f doc. 

a c a 

(d) Iffe al(oc) on [a, b] and if )f(x)I ~Mon [a, b], then 

b 
f doc ~ M[oc(b) - oc(a)]. 

a 

b b b 
f d(oc1 + oc2) = f doc1 + f doc2 ; 

a a a 

zf fe al(oc) and c is a positive constant, thenfe al(coc) and 

b b 
f d(coc) = c f doc. 

a a 

Proof If f = fi + f 2 and P is any partition of [a, b ], we have 

(20) L(P,f1, oc) + L(P,f2 , oc) S L(P,f, oc) 

~ U(P,f, oc) S U(P,fi, oc) + U(P,f2 , oc). 

If f 1 e af(oc) and f 2 e af(oc), let e > 0 be given. There are partitions P1 
(j = 1, 2) such that 

U(P1 ,Jj, oc) -L(P1 ,Jj, oc) < e. 



(21) 

6.13 
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These inequalities persist if P1 and P 2 are replaced by their common 
refinement P. Then (20) implies 

U(P,f, rt) - L(P,f, rt) < 2e, 

which proves that/ e af(rt). 
With this same P we have 

(j = 1, 2); 

hence (20) implies 

J f dr:1. ~ U(P,f, rt) < J ./i drt + J /2 drt + 2e. 

Since e was arbitrary, we conclude that 

J / drt ~ J /1 drt + J /2 dr:1.. 

If we replace / 1 and / 2 in (21) by -/1 and -/2 , the inequality is 
reversed, and the equality is proved. 

The proofs of the other assertions of Theorem 6.12 are so similar 
that we omit the details. In part (c) the point is that (by passing to refine
ments) we may restrict ourselves to partitions which contain the point c, 
in approximating J f dr:1.. 

Theorem lf.f e af(r:1.) and g e af(rt) on [a, b], then 
(a) fg E af(r:1.); 

(b) 1/1 e af(r:1.) and 
a a 

Proof Ifwetakeq,(t) = t 2
, Theorem6.11 showsthat/2 eaf(r:1.)if/eaf(Q:). 

The identity 

4fg = (f + g)2 - (f - g)2 

completes the proof of (a). 
If we take </>(t) = It I, Theorem 6.11 shows similarly that 1/1 e af(r:1.). 

Choose c = ± 1, so that 
c JI drt ~ 0. 

Then 
I J f dr:1. I = c J f dr:1. = J cf dr:1. ~ • J l/1 dr:1., 

since cf~ If) . 

6.14 Definition The unit step function I is defined by 

0 
I(x) = 

1 

(x ~ 0), 

(x > 0). 
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6.15 Theorem If a < s < b, f is bounded on [a, b ], f is continuous at s, and 
oc(x) = I(x - s), then 

b 

f doc =f(s). 
a 

Proof Consider partitions P = {x0 , x1 , x2 , x 3}, where x0 = a, and 
x1 = s < x2 < x3 = b. Then 

Since f is continuous at s, we see that M2 and m2 converge to f(s) as 
X2 ► S. 

6.16 Theorem Suppose en~ 0 for 1, 2, 3, ... , I:cn converges, {sn} is a sequence 
of distinct points in (a, b), and 

! 

00 

(22) oc(x) = L en l(x - Sn). 
n= 1 

Let f be continuous on [a, b]. Then 

(23) 

(24) 

(25) 

b oo 

f doc = L Cnf(sn). 
a n= 1 

Proof The comparison test shows that the series (22) converges for 
every x. Its sum oc(x) is evidently monotonic, and oc(a) = 0, oc(b) = I:cn. 
(This is the type of function that occurred in Remark 4.31.) 

Let e > 0 be given, and choose N so that 

00 

Len< 8. 
N+l 

Put 

N 00 

oc1(x) = L cnl(x - Sn), 
n= 1 

oc2(x) = L Cnl(x - Sn). 
N+l 

By Theorems 6.12 and 6.15, 

a 



(26) 
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where M = sup lf(x) I - Since /'J. = !'J.1 + !'J.2 , it follows from (24) and (25) 
that 

b N 

f d!'J. - L Cnf(sn) ~ Me. 
a i= 1 

If we let N ➔ oo, we obtain (23). 

6.17 Theorem Assume !'J. increases monotonically and a' e f!A on [a, b]. Let .f 
be a bounded real function on [a, b ]. 

(27) 

Then f e r!A(!'J.) if and only if f!'J. 1 e f!A. In that case 
b b 
f d!'J. = f(x)a'(x) dx. 

a a 

Proof Let e > 0 be given and apply Theorem 6.6 to /'J.
1

: There is a par
tition P = {x0 , ••• , x,1} of [a, b] such that 

(28) U(P, !'J. 1
) - L(P, !'J. 1

) < e. 

(29) 

(30) 

(31) 

The mean value theorem furnishes points tie [xi-i, xi] such that 

Lia i = /'J.
1 

( t 1) Lix i 

for i = 1, ... , n. If si e [xi-i, x1], then 

n 

L I !'J. 1(s i) - !'J. 1(t 1) I Lix1 < e, 
i= 1 

by (28) and Theorem 6.7(b). Put M = supj/(x)j. Since 

n n 

L f(si) Li!'J.i = L f(si)!'J.'(ti) Lixi 
i=l i=l 

it follows from (29) that 

n n 

L f(si) Li!'J.i - L f(si)!'J.'(si) Lixi ~ Me. 
i=l i=l 

In particular, 

n 

L f(s1) Li!'J.i ~ U(P,f!'J. 1
) + Me, 

i= 1 

for all choices of si e [x1_ 1 , x 1], so that 

U(P,f, !'J.) ~ U(P,f!'J. 1
) + Me. 

The same argument leads from (30) to 

U(P,f!'J. 1
) ~ U(P,f, !'J.) + Me. 

Thus 
I U(P,f, !'J.) - U(P,f!'J. 1

) I ~ Me. 
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(32) 

Now note that (28) remains true if Pis replaced by any refinement. 
Hence (31) also remains true. We conclude that 

-b -b 

f dr,. - f(x)r,.'(x) dx ~ Me. 
a a 

But e is arbitrary. Hence 
-b -b 

f drx = f(x)r,.'(x) dx, 
a a 

for any bounded f The equality of the lower integrals follows from (30) 
in exactly the same way. The theoren1 follows. 

6.18 Remark The two preceding theorems illustrate the generality and 
flexibility which are inherent in the Stieltjes process of integration. If rx is a pure 
step function [this is the name often given to functions of the form (22)], the 
integral reduces to a finite or infinite series. If rx has an integrable derivative, 
the integral reduces to an ordinary Riemann integral. This makes it possible 
in many cases to study series and integrals simultaneously, rather than separately. 

To illustrate this point, consider a physical example. The moment of 
inertia of a straight wire of unit length, about an axis through an endpoint, at 
right angles to the wire, is 

(33) 
1 
x 2 dm 

0 

where m(x) is the mass contained in the interval [O, x]. If the wire is regarded 
as having a continuous density p, that is, if m'(x) = p(x), then (33) turns into 

(34) 
1 
x2 p(x) dx. 

0 

On the other hand, if the wire is composed of masses mi concentrated at 
points xi, (33) becomes 

(35) L xf mi. 
i 

Thus (33) contains (34) and (35) as special cases, but it contains much 
more; for instance, the case in which m is continuous but not everywhere 
differentiable. 

6.19 Theorem (change of variable) Suppose <pis a strictly increasing continuous 
function that maps an interval [A, B] onto [a, b]. Suppose rx is monotonically 
increasing on [a, b] and/ e Bt(rx) on [a, b]. Define P and g on [A, B] by 

(36) p(y) = rx( <p(y)), g(y) = f(<p(y)). 
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Then g e rJt(P) and 

(37) 
B b 

g dp = I drx. 
A a 

(38) 

(39) 

Proof To each partition P = {x0 , ••• , xn} of [a, b] corresponds a partition 
Q = {y0 , ••• , Yn} of [A, B], so that xi = <p(yi). All partitions of [A, B] 
are obtained in this way. Since the values taken by/ on [xi-i, xi] are 
exactly the same as those taken by g on [y i- i, y ij, we see that 

U(Q, g, P) = U(P,f, rx), L(Q, g, P) = L(P,f, rx). 

Since/ e fJt(rx), P can be chosen so that both U(P,f, rx) and L(P,f, rx) 
are close to J / drx. Hence (38), combined with Theorem 6.6, shows that 
g e rJt(P) and that (37) holds. This completes the proof. 

Let us note the following special case: 
Take rx(x) = x. Then P = <p. Assume <p' e fJt on [A, B]. If Theorem 

6.17 is applied to the left side of (3 7), we obtain 

b B 
f(x) dx = f(<p(y))<p'(y) dy. 

a A 

INTEGRATION AND DIFFERENTIATION 

We still confine ourselves to real functions in this section. We shall show that 
integration and differentiation are, in a certain sense, inverse operations. 

6.20 Theorem Let f e fJt on [a, b]. For a ~ x ~ b, put 

X 

F(x) = f(t) dt. 
a 

Then F is continuous on [a, b ],· furthermore, if f is continuous at a point x0 of 
[a, b ], then F is differentiable at x0 , and 

F'(xo) = f(xo), 

Proof Since/ e fJt, f is bounded. Suppose 1/(t)I ~ M for a~ t ~ b. 
If a ~ x < y ~ b, then 

y 

I F(y) - F(x) I = f(t) dt ~ M(y - x), 
X 

by Theorem 6.12(c) and (d). Given e > 0, we see that 

IF(y)-F(x)I <e, 



134 PRINCIPLES OF MATHEMATICAL ANALYSIS 

provided that I y - x I < e/ M. This proves continuity (and, in fact, 
uniform continuity) of F. 

Now suppose/ is continuous at x0 • Given e > 0, choose l, > 0 such 
that 

lf(t) - f(xo)I < e 

if It - x0 I < l,, and a =:; t =s;; b. Hence, if 

x 0 - l, < s =s;; x 0 =s;; t < x 0 + l, 
we have, by Theorem 6.12(d), 

and a =:; s < t =:; b, 

F(t) - F(s) _ f(xo) = 
t-s 

It follows that F'(x0 ) = f(x0 ). 

1 t 

t - s s 
[f(u) - f(xo)] du < e. 

6.21 The fundamental theorem of calculus If f e fJt on [a, b] and if the1·e is 
a differentiable function Fon [a, b] such that F' = f, then 

b 

f(x) dx = F(b) - F(a). 
a 

Proof Let e > 0 be given. Choose a partition P = {x0 , ••• , xn} of [a, b] 
so that U(P,f) -L(P,f) < e. The mean value theorem furnishes points 
tie [xi-i, xi] such that 

for i = 1, ... , n. Thus 

n 

L f(ti) axi = F(b) - F(a). 
i= 1 

It now follows from Theorem 6.7(c) that 

b 

F(b) - F(a) - f(x) dx <e. 
a 

Since this holds for every e > 0, the proof is complete. 

6.22 Theorem (integration by parts) Suppose F and G are differentiable f unc
tions on [a, b], F' = f e fA, and G' = g e fJt. Then 

b b 

F(x)g(x) dx = F(b)G(b) - F(a)G(a) - f(x)G(x) dx. 
a a 

Proof Put H(x) = F(x)G(x) and apply Theorem 6.21 to Hand its deriv
ative. Note that H' e fJt, by Theorem 6.13. 
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INTEGRATION OF VECTOR-VALUED FUNCTIONS 

6.23 Definition Let Ji, ... , h. be real functions on [ a, b ], and let f = (Ii, ... , h.) 
be the corresponding mapping of [a, b] into Rk. If ex increases monotonically 
on [a, b], to say that f e Bt(ex) means thatjj e Bl(ex) for j = 1, ... , k. If this is the 
case, we define 

a a a 

In other words, Jr dex is the point in Rk whosejth coordinate is Jjj dex. 
It is clear that parts (a), (c), and (e) of Theorem 6.12 are valid for these 

vector-valued integrals; we simply apply the earlier results to each coordinate. 
The same is true of Theorems 6.17, 6.20, and 6.21. To illustrate, we state the 
analogue of Theorem 6.21. 

6.24 Theorem /ff and F map [a, b] into Rk, if f e 9l on [a, b ], and ifF' = f, then 

b 
f(t) dt = F(b) - F(a). 

a 

The analogue of Theorem 6.13(b) offers some new features, however, at 
least in its proof. 

6.25 Theorem If f maps [a, b] into Rk and if f e 9l( ex) for some monotonically 
increasing function ex on [a, b ], then I fl e Bt(ex), and 

b b 
(40) f dex ~ If I dex. 

a a 

Proof If f 1, ••• , fk are the components off, then 

(41 ) lfl =(ff+ ''' + fk2)112• 

(42) 

By Theorem 6.11, each of the functionsft2 belongs to Bt(ex); hence so does 
their sum. Since x2 is a continuous function of x, Theorem 4.17 shows 
that the square-root function is continuous on [O, M], for every real M. 
Ifwe apply Theorem 6.11 once more, (41) shows that lfl e9l(ex). 

To prove (40), put y = (y1, .•• , Yk), where y1 = Jfj dex. Then we have 
y = Jf dex, and 

By the Schwarz inequality, 

LY1fJt) ~ IYI lf(t)I (a~ t ~b); 
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hence Theorem 6.12(b) implies 

(43) IYl 2 :s;; IYI lfl drx. 

If y = 0, ( 40) is trivial. If y #: 0, division of ( 43) by I y I gives ( 40). 

RECTIFIABLE CURVES 

We conclude this chapter with a topic of geometric interest which provides an 
application of some of the preceding theory. The case k = 2 (i.e., the case of 
plane curves) is of considerable importance in the study of analytic functions 
of a complex variable. 

6.26 Definition A continuous mapping y of an interval [a, b] into Rk is called 
a curve in Rk. To emphasize the parameter interval [a, b], we may also say that 
y is a curve on [a, b]. 

If y is one-to-one, y is called an arc. 
If y(a) = y(b), y is said to be a closed curve. 

It should be noted that we define a curve to be a mapping, not a point set. 
Of course, with each curve y in Rk there is associated a subset of Rk, namely 
the range of y, but different curves may have the same range. 

We associate to each partition P = {x0 , ••• , xn} of [a, b] and to each 
curve yon [a, b] the number 

n 

A(P, y) = L I y(xt) - y(xt-1) I, 
i= 1 

The ith term in this sum is the distance (in Rk) between the points y(xi_ 1) and 
y(xt), Hence A(P, y) is the length of a polygonal path with vertices at y(x0), 

y(x1), ••• , y(xn), in this order. As our partition becomes finer and finer, this 
polygon approaches the range of y more and more closely. This makes it seem 
reasonable to define the length of y as 

A(y) = sup A(P, y), 

where the supremum is taken over all partitions of [a, b]. 
If A(y) < oo, we say that y is rectifiable. 
In certain cases, A( y) is given by a Riemann integral. We shall _prove this 

for continuously differentiable curves, i.e., for curves y whose derivative y' is 
• continuous. 
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6.27 Theorem If y' is continuous on [a, b], then y is rectifiable, and 

b 

A(y) = I y'(t) I dt. 
a 

Proof If a~ Xt-i < x 1 ~ b, then 

y'(t) dt 
Xt- 1 

Hence 
b 

A(P, y) ~ I y'(t) I dt 
a 

for every partition P of [a, b ]. Consequently, 

b 

A(y)~ ly'(t)ldt. 
a 

Xt 

I y'(t) I dt. 
Xt- 1 

To prove the opposite inequality, let e > 0 be given. Since y' is 
uniformly continuous on [a, b ], there exists {J > 0 such that 

I y'(s) - y'(t) I < e if Is - ti < b. 

Let P = {x0 , ••• , xn} be a partition of [a, b ], with 6.x 1 < {J for all i. If 
x 1_ 1 ~ t ~ x 1, it follows that 

I y'(t)I ~ I y'(xi)I + e. 
Hence 

Xt 

x1-1 

XI 

-- [y'(t) + y'(x1) - y'(t)] dt + e 6.xi 
Xt- 1 

y'(t) dt + [y'(xt) - y'(t)] dt + e 6.x1 
X/- I Xt- 1 

~ I y(xi) - y(xi-i)I + 2e 6.xi. 

If we add these inequalities, we obtain 

b 
I y'(t) I dt ~ A(P, y) + 2e(b - a) 

a 

~ A(y) + 2e(b - a). 
Since e was arbitrary, 

b 

I y'(t) I dt ~ A(y). 
a 

This completes the proof. 
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EXERCISES 

1. Suppose ex increases on [a, b], as Xo s b, ex is continuous at Xo, f(xo) = 1, and 
f(x) = 0 if x -=I= xo. Prove that f e Bi(oc) and that J f doc= 0. 

b 

2. Suppose /-:?. 0, f is continuous on [a, b ], and /(x} dx = 0. Prove that f(x) = 0 
II 

for all x e [a, b]. (Compare this with Exercise 1.) 

3. Define three functions /31, /32, /33 as follows: /3J(x) = 0 if x < 0, /3J(x) = 1 if x > O 
for j = 1, 2, 3; and /31(0) = 0, /32(0) =1, /33(0) = ½. Let/be a bounded function on 
[-1,1]. 
(a) Prove that f e Bi(/31) if and only if.f(O+) = /(0) and that then 

f d/31 = /(0). 

(b) State and prove a similar result for /32. 
(c) Prove that/e ~(/33) if and only if/ is continuous at 0. 
(d) If/ is continuous at O prove that 

f d/31 = f d/32 = f d/33 = f(O). 

4. If /(x) = 0 for all irrational x,f(x) = 1 for all rational x, prove that/¢~ on[a, b] 

for any a< b. 
S. Suppose f is a bounded real function on [a, b], and / 2 e Bl on [a, b]. Does it 

follow that f e Bl? Does the answer change if we assume that f 3 e ~? 
6. Let P be the Cantor set constructed in Sec. 2.44. Let f be a bounded real function 

on [O, 1] which is continuous at every point outside P. Prove that f e ~ on [O, 1 ]. 
Hint: P can be covered by finitely many segments whose total length can be made 
as small as desired. Proceed as in Theorem 6.10. 

7. Suppose f is a real function on (0, 1] and f e ~ on [c, 1] for every c > 0. Define 

1 1 

f(x} dx = Jim /(x) dx 
0 C➔ O c 

if this limit exists (and is finite). 
(a) If f e ~ on [O, 1], show that this definition of the integral agrees with the old 
one. 
(b) Construct a function/ such that the above limit exists, although it fails to exist 

with I /I in place off 
8. Suppose/ e ~ on [a, b] for every b > a where a is fixed. Define 

oo b 

f(x) dx = lim /(x) dx 
II b➔ OO II 

if this limit exists (and is finite). In that case, we say that the integral on the left 
converges. If it also converges after f has been replaced by I/I, it is said to con
verge absolutely. 
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Assume that f (x) 2 0 and that f decreases monotonically on [l, oo ). Prove 

that 

00 

f(x) dx 
1 

converges if and only if 
00 

Lf<n> 
n•1 

converges. (This is the so-called ''integral test'' for convergence of series.) 
9. Show that integration by parts can sometimes be applied to the ''improper'' 

integrals defined in Exercises 7 and 8. (State appropriate hypotheses, formulate a 
theorem, and prove it.) For instance show that 

00 cos x 00 sin x 
o 1+xdx= o (1+x) 2 dx. 

Show that one of these integrals converges absolutely, but that the other does not. 
10. Let p and q be positive real numbers such that 

Prove the following statements. 
(a) If u ~ 0 and v ~ 0, then 

! +! = 1. 
p q 

uP vq 
UV s.-+ , 

p q 

Equality holds if and only if uP = vq. 

(b) If/ e Bl(rx), g e fA(rx),/~ 0, g ~ 0, and 

b b 

f P drx = 1 = gq drx, 
a a 

then 

b 

fgdrxs.1, 
a 

(c) If f and g are complex functions in Bi(rx), ther1 

b b 1/p b 

fgdrx I / I P drx I g I q drx 
a a a 

1/q 

• 

This is Holder's inequality. When p = q = 2 it is usually called the Schwarz 
inequality. (Note that Theorem 1.35 is a very special case of this.) 
(d) Show that Holder's inequality is also true for the '' improper'' integrals de
scribed in Exercises 7 and 8. 
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11. Let oc be a fixed increasing function on [a, b]. For u e Bl(oc), define 

1/2 

llull2 = • 
II 

Suppose/, g, he Bi(oc), and prove the triangle inequality 

ll/-hll2s ll/-ull2+ llg-hll2 
as a consequence of the Schwarz inequality, as in the proof of Theorem 1.37. 

12. With the notations of Exercise 11, suppose f e Bi(oc) and e > 0. Prove that 
there exists a continuous function g on [a, b] such that 11/ - g 112 < e. 

Hint: Let P = {xo, ... , Xn} be a suitable partition of [a, b], define 

ifX1-1StSX1, 
13. Define 

x+1 

f(x) = sin (t 2
) dt. 

X 

(a) Prove that 1/(x)I < 1/x if x > 0. 
Hint: Put t 2 = u and integrate by parts, to show that/(x) is equal to 

cos (x2) 

2x 

Replace cos u by -1. 
(b) Prove that 

- cos [(x + 1)2
] 

2(x + 1) 

(x+ 1>2 COS U 

- x2 4u3t2 du. 

2xf(x) = cos (x2
) - cos [(x + 1)2

] + r(x) 

where I r(x) I < c/x and c is a constant. 
(c) Find the upper and lower limits of xf(x), as x ► oo. 

00 

(d) Does sin (t 2
) dt converge? 

0 

14. Deal similarly with 

x+1 

f(x) = sin (et) dt. 
X 

Show that 

and that 

exf(x) = cos (ex)- e- 1 cos (ex+ 1) + r(x), 

where lr(x)I < ce-x, for some constant C. 
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15. Suppose/is a real, continuously differentiable function on [a, b],f(a) =fCb) = 0, 
and 

" f 2Cx) dx = 1. 
II 

Prove that 

" xfCx)f'Cx) dx = - ½ 
II 

and that 

" " [/'Cx)] 2 dx · x 2f 2Cx) dx > !. 
II II 

16. For 1 < s < oo, define 

00 1 ,cs)= L --; . 
n=t n 

(This is Riemann's zeta function, of great importance in the study of the distri
bution of prime numbers.) Prove that 

Ca) ,cs)= s 
"° [x] 

i r+1 dx 

and that 

S 00 X - [X] 
Cb) ,cs)= l - s s+t dx, 

S- 1 X 

where [x] denotes the greatest integer s x. 
Prove that the integral in Cb) converges for all s > 0. 
Hint: To prove Ca), compute the difference between the integral over [1, N] 

and the Nth partial sum of the series that defines ,cs). 
17. Suppose oc increases monotonically on [a, b], g is continuous, and uCx) = G'Cx) 

for a s x s b. Prove that 

" " ocCx)gCx) dx = GCb)ocCb) - GCa)ocCa) - G doc. 
II II 

Hint: Take g real, without loss of generality. Given P = {xo, xi, ... , Xn}, 
choose t, e Cx, _ 1, x,) so that gCt,) ~x, = GCx,) - GCx, _ 1), Show that 

n n 

L ocCx,)gCt,) ~x, = GCb)ocCb)- GCa)ocCa)- L GCx1-1) ~oc,. 
1•1 1=1 

18. Let ')'1, ')'2, ')'3 be curves in the complex plane, defined on [O, 21r] by 

y1Ct) = ett, y2Ct) = e2tt, y 3Ct) = e2nlt sin (l/t)
0 

Show that these three curves have the same range, that ')'1 and ')'2 are rectifiable, 
that the length of ')'1 is 21r, that the length of ')'2 is 41r, and that ')'3 is not rectifiable. 
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19. Let Yi be a curve in Rk, defined on [a, b]; let ¢, be a continuous 1-1 mapping of 
[c, d] onto [a, b], such that ¢,(c) = a; and define Y2(s) = Yi(</>(s)). Prove that Y2 is 
an arc, a closed curve, or a rectifiable curve if and only if the same is true of y 1 • 

Prove that Y2 and Yi have the same length. 



SEQUENCES AND SERIES OF FUNCTIONS 

In the present chapter we confine our attention to complex-valued functions 
(including the real-valued ones, of course), although many of the theorems and 
proofs which follow extend without difficulty to vector-valued functions, and 
even to mappings into general metric spaces. We choose to stay within this 
simple framework in order to focus attention on the most important aspects of 
the problems that arise when limit processes are interchanged. 

DISCUSSION OF MAIN PROBLEM 

7.1 Definition Suppose {f,.}, n = 1, 2, 3, ... , is a sequence of functions 
defined on a set E, and suppose that the sequence of numbers {f,.(x)} converges 
for every x e E. We can then define a function/ by 

(1) f(x) = limf,.(x) (x EE). 
n➔ oo 



144 PRINCIPLES OF MATHEMATICAL ANALYSIS 

Under these circumstances we say that {J,.} converges on E and that/ is 
the limit, or the limit function, of {J,.}. Sometimes we shall use a more descriptive 
terminology and shall say that '' {J,.} converges to/ pointwise on E'' if (I) holds. 
Similarly, if IJ,.(x) converges for every x e E, and if we define 

00 

(2) f(x) = Lfn(x) (x e E), 
n=l 

the function f is called the sum of the series I.J,. . 
The main problem which arises is to determine whether important 

properties of functions are preserved under the limit operations (I) and (2). 
For instance, if the functionsJ,. are continuous, or differentiable, or integrable, 
is the same true of the limit function? What are the relations between/~ and/', 
say, or between the integrals of J,. and that of/? 

To say that/ is continuous at a limit point x means 

lim/(t) = f(x). 
t➔x 

Hence, to ask whether the limit of a sequence of continuous functions is con
tinuous is the same as to ask whether 

(3) lim limJ,.(t) = lim limJ,.(t), 

i.e., whether the order in which limit processes are carried out is immaterial. 
On the left side of (3), we first let n • oo, then t • x; on the right side, t-, x 
first, then n • oo. 

We shall now show by means of several examples that limit processes 
cannot in general be interchanged without affecting the result. Afterward, we 
shall prove that under certain conditions the order in which limit operations 
are carried out is immaterial. 

Our first example, and the simplest one, concerns a ''double sequence.'' 

7.2 Example Form= 1, 2, 3, ... , n = 1, 2, 3, ... , let 

m 

Then, for every fixed n, 

so that 

(4) 

s =--· m,n + m n 

lim Sm,n = 1, 
ffl➔ 00 

lim lim Sm,n = 1. 
n ➔ oo m➔ oo 
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On the other hand, for every fixed m, 

so that 

(5) 

7.3 Example Let 

lim Sn,,n = 0, 
n ➔ oo 

lim lim Sm,n = 0. 
m➔ oo n➔ oo 

x2 
fn(x) = (1 + x2)n (xreal; n = 0, 1, 2, ... ), 

and consider 

(6) 

Since.fn(O) = 0, we have/(0) = 0. For x :/= 0, the last series in (6) is a convergent 
geometric series with sum 1 + x 2 (Theorem 3.26). Hence 

(7) 
0 

f(x) = 1 + x2 
(x = 0), 
(x :/= 0), 

so that a convergent series of continuous functions may have a discontinuous 
sum. 

7.4 Example For m = 1, 2, 3, ... , put 

fm(x) = lim (cos m!nx)2n. 
n➔ oo 

When m !xis an integer,fm(x) = 1. For all other values of x,fm(x) = 0. Now let 

f(x) = lim fm(x). 
m➔ oo 

For irrational x, fm(x) = 0 for every m; hence f(x) = 0. For rational x, say 
x = p/q, where p and q are integers, we see that m !x is an integer if m ~ q, so 
that/(x) = 1. Hence 

(8) lim 
(x irrational), 
(x rational). 

We have thus obtained an everywhere discontinuous limit function, which 
is not Riemann-integrable (Exercise 4, Chap. 6). 
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7.S Example Let 
• 

(9) 

and 

sin nx 
(xreal, n = 1, 2, 3, ... ), 

f(x) = limf,.(x) = 0. 
n ➔ oo 

Then.f'(x) = 0, and 

f ~(x) = J; cos nx, 

so that [f~} does not converge to f'. For instance, 

f~(O) = Jn > + oo 

as n > oo, whereas/'(O) = 0. 

7.6 Example Let 

(10) (0 ~ x ~ l, n = I, 2, 3, ... ). 

For O < x ~ 1, we have 

lim/,,(x) = 0, 

by Theorem 3.20(d). Since/n(O) = 0, we see that 

(11) lim/,,(x) = 0 (0 ~ x ~ 1). 

A simple calculation shows that 

1 1 
x(l - x 2)n dx = --· 

o 2n + 2 

Thus, in spite of (11), 

1 n2 
fn(x) dx = 2 2 > + oo 

o n+ 

as n > oo. 
If, in (10), we replace n2 by n, (11) still holds, but we now have 

1 n 1 
f,.(x) dx = lim 

2 2 
= -

2
, 

0 n➔ oo n + 
lim 
n ➔ oo 

whereas 
1 

Iimfn(X) dx = 0. 
0 n➔ oo 
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Thus the limit of the integral need not be equal to the integral of the limit, 
even if both are finite. 

After these examples, which show what can go wrong if limit processes 
are interchanged carelessly, we now define a new mode of convergence, stronger 
than pointwise convergence as defined in Definition 7.1, which will enable us to 
arrive at positive results. 

UNIFORM CONVERGENCE 

7.7 Definition We say that a sequence of functions {f,.}, n = I, 2, 3, ... , 
converges uniformly on E to a function f if for every e > 0 there is an integer N 
such that n ~ N implies 
(12) lfn(x) - f(x) I ~ e 
for all x e E. 

It is clear that every uniformly convergent sequence is pointwise con
vergent. Quite explicitly, the difference between the two concepts is this: If {f,.} 
converges pointwise on E, then there exists a function f such that, for every 
e > 0, and for every x e E, there is an integer N, depending one and on x, such 
that (12) holds if n ~ N; if {f,.} converges uniformly on E, it is possible, for each 
e > 0, to find one integer N which will do for all x e E. 

We say that the series 'f.f,.(x) converges uniformly on E if the sequence 
{ s"} of partial sums defined by 

n 

L ft(x) = sn(x) 
i= 1 

converges uniformly on E. 
The Cauchy criterion for uniform convergence is as follows. 

7.8 Theorem The sequence of functions {f,.}, defined on E, converges uniformly 
on E if and only if for every e > 0 there exists an in;teger N such that m ~ N, 
n ~ N, x e E implies 
(13) 11,,(x) - fm(x) I ~ e. 

Proof Suppose {f,.} converges uniformly on E, and let / be the limit 
function. Then there is an integer N such that n ~ N, x e E implies 

e 
lfn(x) - f(x) I ~ 2, 

so that 

lfn(x) - fm(x) I ~ lfn(x) - f (x) I + lf(x) - fm(x) I ~ e 

if n ~ N, m ~ N, x e E. 
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(14) 

Conversely, suppose the Cauchy condition holds. By Theorem 3.11, 
the sequence {f,.(x)} converges, for every x, to a limit which we may call 
f(x). Thus the sequence {f,.} converges on E, to f. We have to prove that 
the convergence is uniform. 

Let e > 0 be given, and choose N such that (13) holds. Fix n, and 
let m • oo in (13). Since fm(x) • f(x) as m • oo, this gives 

lfn(x) - f(x) I :S: e 

for every n ~ N and every x e E, which completes the proof. 

The following criterion is sometimes useful. 

7.9 Theorem Suppose 

limf,.(x) = f (x) (x EE). 
n➔ oo 

Put 
Mn = sup lfn(x) - f (x) I, 

xeE 

Then fn ➔ f uniformly on E if and only if Mn • 0 as n • oo. 

Since this is an immediate consequence of Definition 7.7, we omit the 
details of the proof. 

For series, there is a very convenient test for uniform convergence, due to 
Weierstrass. 

7.10 Theorem Suppose{f,.} is a sequence of functions defined on E, and suppose 

lfn(x) I :S: Mn (x e E, n = 1, 2, 3, ... ). 

Then 'I:.fn converges uniformly on E if !.Mn converges. 

Note that the converse is not asserted (and is, in fact, not true). 

Proof If !.Mn converges, then, for arbitrary e > 0, 

m m 

Lfi(x) :S: L M 1 S: e (x EE), 
t=n t=n 

provided m and n are large enough. Uniform convergence now follows 
from Theorem 7 .8. 
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UNIFORM CONVERGENCE AND CONTINUITY 

7.11 Theorem Suppose In • f uniformly on a set E in a metric space. Let x be 
a limit point of E, and suppose that 

(15) limf,.(t) = An (n = 1, 2, 3, ... ). 

Then {An} converges, and 

(16) Iimf(t) = lim An. 

(17) 

(18) 

t ➔x n➔ oo 

In other words, the conclusion is that 

lim limf,.(t) = lim limf,.(t). 
t➔x n➔ oo n➔ oo t➔x 

Proof Let e > 0 be given. By the uniform convergence of {f,.}, there 
exists N such that n ~ N, m ~ N, t e E imply 

lfn(t) - fm(t) I ~ e. 

Letting t • x in (18), we obtain 

IAn - Am I~ B 

for n ~ N, m ~ N, so that {An} is a Cauchy sequence and therefore 
converges, say to A. 

Next, 

(19) lf(t) - A I ~ lf(t) - fn(t) I + lfn(t) -An I + IAn - A I-

(20) 

(21) 

(22) 

We first choose n such that 

e 
If (t) - fn(t) I ~ 3 

for all t e E (this is possible by the uniform convergence), and such that 

Then, for this n, we choose a neighborhood V of x such that 

e 
lfn(t) - An I ~ 3 

if t e V n E, t 'I= x. 
Substituting the inequalities (20) to (22) into (19), we see that 

lf(t) - A I ~ e, 

provided t e V n E, t-:/=x. This is equivalent to (16). 
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7.12 Theorem If {J,.} is a sequence of continuous functions on E, and if f,. ➔ f 
uniformly on E, then f is continuous on E. 

This very important result is an immediate corollary of Theorem 7.11. 
The converse is not true; that is, a sequence of continuous functions may 

converge to a continuous function, although the convergence is not uniform. 
Example 7.6 is of this kind (to see this, apply Theorem 7.9). But there is a case 
in which we can assert the converse. 

7.13 Theorem Suppose K is compact, and 

(a) {f,.} is a sequence of continuous functions on K, 
(b) {f,.} converges pointwise to a continuous function f on K, 
(c) f,.(x) '?:.fn+ 1(x)for all x EK, n = 1, 2, 3, .... 

Then f,. ➔ f uniformly on K. 

Proof Put gn = fn - f Then gn is continuous, gn • 0 pointwise, and 
gn '?:. gn+t· We have to prove that gn ➔ O uniformly on K. 

Let e > 0 be given. Let Kn be the set of all x EK with gn(x) '?:. s. 
Since gn is continuous, Kn is closed (Theorem 4.8), hence compact (Theorem 
2.35). Since gn '?:. gn+t, we have Kn::::, Kn+t· Fix x EK. Since gn(x) • 0, 
we see that x ¢ Kn if n is sufficiently large. Thus x ¢ n Kn . In other words, 
n Kn is empty. Hence KN is empty for some N (Theorem 2.36). It follows 
that O ~ gn(x) < e for all x E Kand for all n '?:. N. This proves the theorem. 

Let us note that compactness is really needed here. For instance, if 

I 
f,.(x) = nx + 

1 
(0 < x < 1; n = 1, 2, 3, ... ) 

thenf,.(x) , 0 monotonically in (0, 1), but the convergence is not uniform. 

7.14 Definition If Xis a metric space, ~(X) will denote the set of all complex
valued, continuous, bounded functions with domain X. 

[Note that boundedness is redundant if X is compact (Theorem 4.15). 
Thus ~(X) consists of all complex continuous functions on X if Xis compact.] 

We associate with each/ E ~(X) its supremum norm 

llfll = sup lf(x) 1-
x ex 

Since f is assumed to be bounded, llfll < oo. It is obvious that 11/11 = 0 only if 
f(x) = 0 for every x e X, that is, only if f = 0. If h =f + g, then 

lh(x) I :s: lf(x) I + lg(x) I :s: 11!11 + llgll 
for all x e X; hence 

11/ + g II :s: 11!11 + Ilg 11-
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If we define the distance between/e~(X) and g e~(X) to be 11/-gll, 
it follows that Axioms 2.15 for a metric are satisfied. 

We have thus made ~(X) into a metric space. 
Theorem 7 .9 can be rephrased as follows: 

A sequence {f,.} converges to f with respect to the metric of ~(X) if and 
only if f,. ➔ f uniformly on X. 

Accordingly, closed subsets of ~(X) are sometimes called uniformly 
closed, the closure of a set d c ~(X) is called its uniform closure, and so on. 

7.15 Theorem The above metric makes ~(X) into a complete metric space. 

Proof Let {f,.} be a Cauchy sequence in ~(X). This means that to each 
e > 0 corresponds an N such that 11/n - Im II < e if n ~ N and m ~ N. 
It follows (by Theorem 7.8) that there is a function f with domain X to 
which {f,.} converges uniformly. By Theorem 7.12, f is continuous. 
Moreover, f is bounded, since there is an n such that lf(x) - f,.(x) I < 1 
for all x e X, and f,. is bounded. 

Thus f e ~(X), and since f,. ➔ f uniformly on X, we have 
11/-f,.II ,Oasn ,oo. 

UNIFORM CONVERGENCE AND INTEGRATION 

7.16 Theorem Let IX be monotonically increasing on [a, b]. Suppose f,. e at(cx) 
on [a, b ], for n = 1, 2, 3, ... , and suppose f,. • f uniformly on [a, b ]. Then f e at(cx) 
on [a, b ], and 

b b 
(23) f dcx = lim fn dcx. 

a n ➔ oo a 

(The existence of the limit is part of the conclusion.) 

Proof It suffices to prove this for real f,. . Put 

(24) en = sup lfn(x) - f (x) I, 

(25) 

the supremum being taken over a :::;; x :::;; b. Then 

fn - en =:;;f =:;;f,. + en, 

so that the upper and lower integrals off (see Definition 6.2) satisfy 

a -
Hence 

-

-
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(26) 

Since Bn ► 0 as n ► oo (Theorem 7.9), the upper and lower integrals off 
are equal. 

Thus/ e Bl(C<). Another application of (25) now yields 

b b 

f dC< - fn dC< ~ Bn[C<(b) - C<(a)]. 
a a 

This implies (23). 

Corollary If fn e Bl( C<) on [ a, b] and if 

00 

f(x) = L f,,(x) (a~ x ~ b), 
n=l 

the series converging uniformly on [a, b ], then 

b oo b 

f dC< = L In dC<. 
a n= 1 a 

In other words, the series may be integrated term by term. 

UNIFORM CONVERGENCE AND DIFFERENTIATION 

We have already seen, in Example 7.5, that uniform convergence of {In} implies 
nothing about the sequence {f~}. Thus stronger hypotheses are required for the 
assertion that J; ► f' if In ► f. 

7.17 Theorem Suppose {f,,} is a sequence of functions, differentiable on [a, b] 
and such that {.fn(x0)} converges for some point x0 on [a, b]. If {J:} converges 
uniformly on [a, b ], then {In} converges uniformly on [a, b ], to a function f, and 

(27) f'(x) = lim/;(x) (a~ x ~ b). 
n-+ oo 

Proof Lets> 0 be given. Choose N such that n ~ N, m ~ N, implies 

(28) 

and 

(29) 
B 

lf~(t) - J:i(t) I < 2(b (a~ t ~ b). 



(30) 

(31) 

(32) 

(33) 

SEQUENCES AND SERIES OF FUNCTIONS 153 

Ifwe apply the mean value theorem 5.19 tothefunctionfn-fm, (29) 
shows that 

Ix - t le e 
l.fn(x) - fm(x) - fn(t) + fm(t) I S: 2(b _ a) S: 2 

for any x and t on [a, b], if n :2!': N, m :2!': N. The inequality 

l.fn(x) - fm(x) I S: l.fn(x) - fm(x) - .fn(xo) + fm(Xo) I + lfn(Xo) - fm(Xo) I 
implies, by (28) and (30), that 

l.fn(x) - fm(x) I < e (a S: x S: b, n :2!': N, m :2!': N), 

so that {.fn} converges uniformly on [a, b ]. Let 

f(x) =lim.fn(x) (as; x s; b). 
n ➔ oo 

Let us now fix a point x on [a, b] and define 

</Jn(t) = .fn(t) - .fn(x), 
t- X 

<p(t) = f(t) - f(x) 
t- X 

for a s; t ~ b, t :/= x. Then 

lim </Jn(t) = J:(x) (n = 1, 2, 3, ... ). 

The first inequality in (30) shows that 

8 
I </Jn(t) - </Jm(t) I S: 2(b _ a) (n :2!': N, m :2!': N), 

so that { </Jn} converges uniformly, for t :/= x. Since {fn} converges to f, we 
conclude from (31) that 

lim </Jn(t) = <p(t) 
n ➔ oo 

uniformly for a s; t s; b, t :/= x. 
If we now apply Theorem 7.11 to { </Jn}, (32) and (33) show that 

lim <p(t) = limf:(x); 
t ➔ x n ➔ oo 

and this is (27), by the definition of <p(t). 

Remark: If the continuity of the functions J: is assumed in addition to 
the above hypotheses, then a much shorter proof of (27) can be based on 
Theorem 7 .16 and the fundamental theorem of calculus. 
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7.18 Theorem There exists a real continuous function on the real line which is 
nowhere differentiable. 

(34) 

(35) 

(36) 

(37) 

Proof Define 

<p(x) = Ix I ( -1 S: XS: 1) 

and extend the definition of <p(x) to all real x by requiring that 

<p(x + 2) = <p(x). 

Then, for all s and t, 

l'P(s) - <p(t) I s: Is - t 1. 
In particular, <p is continuous on R1• Define 

00 

f(x) = L (¾)n<p(4nx). 
n=O 

Since O 5:: <p s; 1, Theorem 7.10 shows that the series (37) converges 
uniformly on R1

• By Theorem 7 .12, f is continuous on R1• 

Now fix a real number x and a positive integer m. Put 

(38) '5m = ± ½• 4-m 

(39) 

where the sign is so chosen that no integer lies between 4mx and 4m(x + '5111). 
This can be done, since 4m l'5m I = ½. Define 

<p(4n(x + '5m)) - <p(4nx) 
Yn = · 

'5111 

When n > m, then 4n<5,n is an even integer, so that Yn = 0. 
(36) implies that IYn I 5:: 4n, 

Since IYm I = 4m, we conclude that 

f(x + '5m) - f(x) 

= ½(3m + 1). 

When O 5:: n 5:: m, 

As m ➔ oo, '5m ➔ 0. It follows that/ is not differentiable at x. 

EQUICONTINUOUS FAMILIES OF FUNCTIONS 

In Theorem 3.6 we saw that every bounded sequence of complex numbers 
contains a convergent subsequence, and the question arises whether something 
similar is true for sequences of functions. To make the question more precise, 
we shall define two kinds of boundedness. 
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7.19 Definition Let {.fn} be a sequence of functions defined on a set E. 
We say that{.fn} is pointwise bounded on E if the sequence{.fn(x)} is bounded 

for every x e E, that is, if there exists a finite-valued function <I> defined on E 
such that 

l.fn(x) I < </>(x) (x e E, n = 1, 2, 3, ... ). 

We say that {.fn} is uniformly bounded on E if there exists a number M 
such that 

l.fn(x) I < M (x e E, n = 1, 2, 3, ... ). 

Now if {In} is pointwise bounded on E and E1 is a countable subset of E, 
it is always possible to find a subsequence {Ink} such that {.fnk(x)} converges for 
every x e E1 • This can be done by the diagonal process which is used in the 
proof of Theorem 7.23. 

However, even if {.fn} is a uniformly bounded sequence of continuous 
functions on a compact set E, there need not exist a subseG:ience which con
verges pointwise on E. In the following example, this would be quite trouble
some to prove with the equipment which we have at hand so far, but the proof 
is quite simple if we appeal to a theorem from Chap. 11. 

7.20 Example Let 

.fn(x) = sin nx (0 S: X S: 21t, n = 1, 2, 3, . , .) . 

Suppose there exis-ts a sequence {nk} such that {sin nkx} converges, for every 
x e [O, 21t]. In that case we must have 

lim (sin nkx - sin nk+ 1x) = 0 (0 S: X S: 21t); 
k➔ oo 

hence 

(40) Iim (sin nkx - sin nk+ 1x)2 = 0 (0 S: X S: 21t), 
k➔ oo 

By Lebesgue's theorem concerning integration of boundedly convergent 
sequences (Theorem 11.32), (40) implies 

2n 
(41) lim (sin nkx - sin nk+ 1x) 2 dx = 0. 

k➔ OO 0 

But a simple calculation shows that 

2n 

(sin nkx - sin nk+ 1x) 2 dx = 21t, 
0 

which contradicts (41). 
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Another question is whether every convergent sequence contains a 
uniformly convergent subsequence. Our next example will show that this 
need not be so, even if the sequence is uniformly bounded on a compact set. 
(Example 7.6 shows that a sequence of bounded functions may converge 
without being uniformly bounded; but it is trivial to see that uniform conver
gence of a sequence of bounded functions implies uniform boundedness.) 

7.21 Example Let 

x2 
fn(x) = x2 + (1 - nx)2 (0 :::;; x:::;; 1, n = 1, 2, 3, ... ). 

Then l.fn(x) I :::;; 1, so that {.fn} is uniformly bounded on [O, 1]. Also 

lim/n(x) = 0 (0 :::;; x :::;; 1), 
n ➔ oo 

but 

1 
.fn - = 1 (n = 1, 2, 3, ... ), 

n 

so that no subsequence can converge uniformly on [O, l]. 

The concept which is needed in this connection is that of equicontinuity; 
it is given in the following definition. 

7.22 Definition A family !F of complex functions f defined on a set E in a 
metric space X is said to be equicontinuous on E if for every e > 0 there exists a 
<> > 0 such that 

1/(x) - I (y) I < e 

whenever d(x, y) < <>, x e E, ye E, and/e !F. Here d denotes the metric of X. 
It is clear that every member of an equicontinuous family is uniformly 

continuous. 
The sequence of Example 7.21 is not equicontinuous. 
Theorems 7.24 and 7.25 will show that there is a very close relation 

between equicontinuity, on the one hand, and unifor1n convergence of sequences 
of continuous functions, on the other. But first we describe a selection process 
which has nothing to do with continuity. 

7.23 Theorem If {.fn} is a pointwise bounded sequence of complex Junctions on 
a countable set E, then {.fn} has a subsequence {.fnk} such that {.fnk(x)} converges for 
every x e E. 
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Proof Let {xi}, i = 1, 2, 3, ... , be the points of E, arranged in a sequence. 
Since {/n(x1)} is bounded, there exists a subsequence, which we shall 
denote by {Ii ,k}, such that {.fi ,k( x 1)} converges as k ➔ oo. 

Let us now consider sequences S 1, S 2 , S 3 , ... , which we represent 
by the array 

S1: /1,1 /i,2 /1,3 /1,4 · · · 

S2: /2,1 /2,2 /2,3 /2,4 · · · 

S3: /3,1 /3,2 /3,3 /3,4 · · · 

• • • • • • • • • • • • • • • • • • 

and which have the following properties: 

(a) Sn is a subsequence of Sn_ 1, for n = 2, 3, 4, .... 
(b) {.fn,k(xn)} converges, as k ► oo (the boundedness of {.fn(xn)} 
makes it possible to choose Sn in this way); 
(c) The order in which the functions appear is the same in each se
quence; i.e., if one function precedes another in S1, t'iey are in the same 
relation in every Sn , until one or the other is deleted. Hence, when 
going from one row in the above array to the next below, functions 
may move to the left but never to the right. 

We now go down the diagonal of the array; i.e., we consider the 
sequence 

S· " f f " · · · • 11,1 2,2 3,3 J4,4 · 

By (c), the sequence S (except possibly its first n - 1 terms) is a sub
sequence of Sn, for n = 1, 2, 3, . . . . Hence (b) implies that {.fn,n(xi)} 
converges, as n ► oo, for every xi e E. 

7.24 Theorem If K is a compact metric space, if In e ~(K)for n = 1, 2, 3, ... , 
and if {In} converges uniformly on K, then {.fn} is equicontinuous on K. 

Proof Let s > 0 be given. Since {In} converges uniformly, there is an 
integer N such that 

(42) lfn - fNI < B (n > N). 

(43) 

(See Definition 7.14.) Since continuous functions are uniformly con
tinuous on compact sets, there is a b > 0 such that 

lfi(x) - fi(Y) < B 

if 1 ~ i ~ N and d(x, y) < b. 
If n > N and d(x, y) < b, it follows that 

l.fn(x) - fn(Y) I ~ l.fn(x) - fN(x) I + l[N(x) - fN(Y) I + l[N(Y) - fn(y) I < 3s. 

In conjunction with (43), this proves the theorem. 
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7.25 Theorem If K is compact, if f,. e <l(K) for n = I, 2, 3, ... , and if {f,.} is 
pointwise bounded and equicontinuous on K, then 

(44) 

(45) 

(46) 

(a) {f,.} is uniformly bounded on K, 
(b) {f,.} contains a uniformly convergent subsequence. 

Proof 

(a) Lets> 0 be given and choose {J > 0, in accordance with Definition 
7 .22, so that 

Jf,.(x) - f,.(y) I < s 

for all n, provided that d(x, y) < D. 
Since K is compact, there are finitely many points Pi, ... , p, in K 

such that to every x e K corresponds at least one p 1 with d(x, p1) < D. 
Since{f,.} is pointwise bounded, there exist M, < oo such that lf,,(p1) I < Mi 
for all n. If M = max (Mi, ... , M,), then 11,,(x)I < M + s for every 
x e K. This proves (a). 
(b) Let Ebe a countable dense subset of K. (For the existence of such a 
set E, see Exercise 25, Chap. 2.) Theorem 7.23 shows that {f,.} has a 
subsequence {.fn,} such that {f,.,(x)} converges for every x e E. 

Put In, = g 1, to simplify the notation. We shall prove that {g 1} 

converges uniformly on K. 
Let s > 0, and pick {J > 0 as in the beginning of this proof. Let 

V(x, {J) be the set of ally e K with d(x, y) < <J. Since Eis dense in K, and 
K is compact, there are finitely many points Xi, ••• , Xm in E such that 

Kc V(xi, <J) u · · · u V(xm, <J). 

Since {g i(x)} converges for every x e E, there is an integer N such 
that 

whenever i :2!': N, j :2!': N, 1 :::;; s :::;; m. 
If x e K, (45) shows that x e V(xs, {J) for some s, so that 

lg,(x) - g1(xs) I < B 

for every i. If i :2!': N andj :2!': N, it follows from (46) that 

lg,(x) - gJ(x) I :5: lgi(x) - g,(xs) I + lg,(xs) - g1(xs) I+ lg1(xs) - gJ(x) I 
< 3s. 

This completes the proof. 
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THE STONE-WEIERSTRASS THEOREM 

7.26 Theorem If f is a continuous complex function on [a, b ], there exists a 
sequence of polynomials P n such that 

lim Pn(x) = f(x) 
n ➔ oo 

uniformly on [a, b ]. If f is real, the Pn may be taken real. 

This is the form in which the theorem was originally discovered by 
Weierstrass. 

(47) 

(48) 

(49) 

Proof We may assume, without loss of generality, that [a, b] = [O, 1]. 
We may also assume that /(0) = /(1) = 0. For if the theorem is proved 
for this case, consider 

g(x) = f(x) - /(0) - x[/(1) - /(0)] (0 ~ X ~ 1). 

Here g(O) = g(l) = 0, and if g can be obtained as the limit of a uniformly 
convergent sequence of polynomials, it is clear that the same is true for f, 
since f - g is a polynomial. 

Furthermore, we define/(x) to be zero for x outside [O, 1]. Then/ 
is uniformly continuous on the whole line. 

We put 

where cn is chosen so that 

1 

Qn(x) dx = 1 
-1 

(n = 1, 2, 3, ... ), 

( n = 1, 2, 3, ... ) . 

We need some information about the order of magnitude of cn . Since 

1 1 

(1 - x2)n dx = 2 (1 - x2)n dx '?:. 2 
-1 0 

'?:.2 

it follows from (48) that 

1/../n 
(1 - nx2

) dx 
0 
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(50) 

(51) 

The inequality (1 - x 2)n ~ 1 - nx2 which we used above is easily 
shown to be true by considering the function 

(1 - x 2)n - 1 + nx2 

which is zero at x = 0 and whose derivative is positive in (0, 1). 
For any b > 0, (49) implies 

Qn(X) ~ J-;, (1 - b2)n (b ~ Ix I ~ 1), 

so that Qn ► 0 uniformly in b ~ Ix I ~ 1. 
Now set 

1 

Pn(x) = f(x + t)Qn(t) dt (0 ~ X ~ 1). 
-1 

Our assumptions about/ show, by a simple change of variable, that 
1-x 1 

Pn(X) = f(x + t)Qn(t) dt = f(t)Qn(t - x) dt, 
-x 0 

and the last integral is clearly a polynomial in x. Thus { Pn} is a sequence 
of polynomials, which are real if/ is real. 

Givens> 0, we choose b > 0 such that IY - x I < b implies 

B 
lf(y) - f(x) I < 2· 

Let M = sup 1/(x) I, Using (48), (50), and the fact that Qn(x) ~ 0, we 
see that for O ~ x ~ 1, 

1 

IPn(x) - f(x) I = [/(x + t) - f(x)]Qn(t) dt 
-1 

1 

lf(x + t) - f (x) Qn(t) dt 
-1 

-IJ B lJ 1 

~ 2M -1 Qn(t) dt + 2 -IJ Qn(t) dt + 2M lJ Qn(t) dt 

for all large enough n, which proves the theorem. 

It is instructive to sketch the graphs of Qn for a few values of n; also, 
note that we needed uniform continuity off to deduce uniform convergence 
of {Pn}. 
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In the proof of Theorem 7 .32 we shall not need the full strength of 
Theorem 7.26, but only the following special case, which we state as a corollary. 

7.27 Corollary For every interval [- a, a] there is a sequence of real poly
nomials P n such that P n(O) = 0 and such that 

lim Pn(x) = Ix I 
n ➔ oo 

uniformly on [ - a, a]. 

Proof By Theorem 7.26, there exists a sequence {P:} of real polynomials 
which converges to Ix I uniformly on [ - a, a]. In particular, P:(o) ► 0 
as n ► oo. The polynomials 

Pn(x) = P:(x) - P:(O) (n = I, 2, 3, ... ) 

have desired properties. 

We shall now isolate those properties of the polynomials which make 
the Weierstrass theorem possible. 

7.28 Definition A family .91 of complex functions defined on a set Eis said 
to be an algebra if (i) f + g e .91, (ii) fg e .91, and (iii) cf e .91 for all/ e .91, g e .91 
and for all complex constants c, that is, if .91 is closed under addition, multi
plication, and scalar multiplication. We shall also have to consider algebras of 
real functions; in this case, (iii) is of course only required to hold for all real c. 

If .91 has the property that f e .91 whenever f,, e .91 (n = 1, 2, 3, ... ) and 
fn ➔ f uniformly on E, then .91 is said to be uniformly closed. 

Let PJ be the set of all functions which are limits of uniformly convergent 
sequences of members of .91. Then PA is called the uniform closure of .91. (See 
Definition 7.14.) 

For example, the set of all polynomials is an algebra, and the Weierstrass 
theorem may be stated by saying that the set of continuous functions on [a, b] 
is the uniform closure of the set of polynomials on [a, b ]. 

7.29 Theorem Let PA be the uniform closure of an algebra .91 of bounded 
functions. Then PA i~ a uniformly closed algebra. 

Proof If f e PJ and g e PA, there exist uniformly convergent sequences 
{f,,}, {gn} such thatfn ► /, gn ► g andfn e .91, gn e .91. Since we are dealing 
with bounded functions, it is easy to show that 

fn + gn ➔ f + g, fngn ➔ fg, cf,, ► cf, 

where c is any constant, the convergence being uniform in each case. 
Hence/+ g e PA,fg e PA, and cf e PA, so that PA is an algebra. 
By Theorem 2.27, PJ is (uniformly) closed. 
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7.30 Definition Let .91 be a family of functions on a set E. Then .91 is said 
to separate points on E if to every pair of distinct points x1, x2 e E there corre
sponds a function/ e .91 such thatf(x1) ::/:- f(x2). 

If to each x e E there corresponds a function g e .91 such that g(x) ::/:- 0, 
we say that .91 vanishes at no point of E. 

The algebra of all polynomials in one variable clearly has these properties 
on R1• An example of an algebra which does not separate points is the set of 
all even polynomials, say on [ - 1, 1 ], since f ( - x) = f (x) for every even function f 

The following theorem will illustrate these concepts further. 

7.31 Theorem Suppose .91 is an algebra of functions on a set E, .91 separates 
points on E, and .91 vanishes at no point of E. Suppose x1, x2 are distinct points 
of E, and c1, c2 are constants (real if .91 is a real algebra). Then .91 contains a 
function f such that 

Proof The assumptions show that .91 contains functions g, h, and k 
such that 

Put 

has the desired properties. 

We now have all the material needed for Stone's generalization of the 
Weierstrass theorem. 

7.32 Theorem Let .91 be an algebra of real continuous functions on a compact 
set K. If .91 separates points on K and if .91 vanishes at no point of K, then the 
uniform closure di of .91 consists of all real continuous functions on K. 

We shall divide the proof into four steps. 

STEP 1 If f e di, then Ill e di. 

Proof Let 

(52) a = sup lf(x) I (xeK) 



(53) 
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and let e > O be given. By Corollary 7.27 there exist real numbers 
Ci, ••• 'Cn such that 

n 

L c,y' - IY I < 8 (-a :S:y :S:a). 
I= 1 

Since di is an algebra, the function 
n 

u = L c,f' 
I= 1 

is a member of di. By (52) and (53), we have 

lu(x) - lf(x) 11 < e (x e K). 

Since di is uniformly closed, this shows that 1/1 e di. 

STEP 2 If f e di and g e di, then max (f, g) e di and min (f, g) e di. 

By max (f, g) we mean the function h defined by 

h(x) = f(x) 
g(x) 

if f (x) ~ g(x), 
if/ (x) < g(x), 

and min (f, g) is defined likewise. 

Proof Step 2 follows from step 1 and the identities 

f + u lf-g I 
max (f, g) = 

2 
+ 

2 
, 

By iteration, the result can of course be extended to any finite set 
of functions: If Ii, ... ,In e di, then max (Ii, ... ,In) e di, and 

min (Ii, ... ,In) e di. 

STEP 3 Given a real function f, continuous on K, a point x e K, and e > 0, there 
exists a/unction Ux e di such that Ux(x) =f(x) and 

(54) 

(55) 

Ux(t) > f(t) - e (t E .((). 

Proof Since .91 c di and d satisfies the hypotheses of Theorem 7.31 so 
does di. Hence, for every y e K, we can find a function h., e di such that 

h.,(x) = f (x), h.,(y) = f (y). 



164 PlllNCIPLES OF MATHEMATICAL ANALYSIS 

(56) 

(57) 

By the continuity of h, there exists an open set J, , containing y, 
such that 

h,(t) > f(t) - B (t eJ,). 

Since K is compact, there is a finite set of points Yi, ... , Yn such that 

Put 

Ux = max (h.,1 , ••• , h.,"). 

By step 2, g e di, and the relations (55) to (57) show that Ux has the other 
X 

required properties. 

STEP 4 Given a real function!, continuous on K, and B > 0, there exists a function 
h e di such that 

(58) lh(x) - f(x) I < B (x EK), 

Since di is uniformly closed, this statement is equivalent to the conclusion 
of the theorem. 

(59) 

(60) 

(61) 

(62) 

Proof Let us consider the functions Ux, for each x e K, constructed in 
step 3. By the continuity of Ux, there exist open sets Vx containing x, 
such that 

Ux(t) <f(t) + B 

Since K is compact, there exists a finite set of points xi, ... , x,n 
such that 

Put 

h = min (Ux 1 , , , , , Uxm). 

By step 2, h e di, and (54) implies 

h(t) > f(t)- B 

whereas (59) and (60) imply 

h(t) < f(t) + e 

Finally, (58) follows from (61) and (62). 

(t EK), 

(t e K). 



SEQUENCES AND SERIES OF FUNCTIONS 165 

Theorem 7.32 does not hold for complex algebras. A counterexample is 
given in Exercise 21. However, the conclusion of the theorem does hold, even 
for complex algebras, if an extra condition is imposed on d, namely, that d 
be self-adjoint. This means that for every fed its complex conjugate J must 

also belong to d; J is defined by J(x) = f (x). 

7.33 Theorem Suppose d is a self-adjoint algebra of complex continuous 
.functions on a compact set K, d separates points on K, and d vanishes at no 
point of K. Then the uniform closure f!4 of d consists of all complex lOntinuous 
functions on K. In other words, dis dense CC(K). 

Proof Let d R be the set of all real functions on K which belong to d. 
If f e d and f = u + iv, with u, v real, then 2u = f + J, and since d 

is self-adjoint, we see that u e d R. If x1 =I= x 2 , there exists fed such 
that f(x 1) = 1,f(x2 ) = O; hence O = u(x2 ) =I= u(x1) = I, which shows that 
d R separates points on K. If x e K, then g(x) =I= 0 for some g e d, and 
there is a complex number ;. such that lg(x) > O; if f = ).g,f = u + iv, it 
follows that u(x) > 0; hence d R vanishes at no point of K. 

Thus d R satisfies the hypotheses of Theorem 7 .32. It follows that 
every real continuous function on K lies in the uniform closure of d R , 

hence lies in f!4. If f is a complex continuous function on K, f = u + iv, 
then u e f!4, v e f!4, hence f e f!4. This completes the proof. 

EXERCISES 

1. Prove that every uniformly convergent sequence of bounded functions is uni
formly bounded. 

2. If {In} and {gn} converge uniformly on a set E, prove that {In + Un} converges 
uniformly on E. If, in addition, {In} and {gn} are sequences of bounded functions, 
prove that {f,,g"} converges uniformly on E. 

3. Construct sequences {/,,}, {gn} which converge u11iformly on some set E, but such 
that {fngn} does not converge uniformly on E (of course, {fngn} must converge on 
E). 

4. Consider 

00 1 
f(x) = L 1 + 2 • 

n= 1 n X 

For what values of x does the series converge absolutely? On what intervals does 
it converge uniformly? On what intervals does it fail to converge uniformly? Is I 
continuous wherever the series converges? Is I bounded? 
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s. Let 

f,,(x) = 

0 

• 2 7T 
Sin -

X 

0 

1 
X < 1 , n+ 

1 1 
n+l ~x~~' 

1 - <x . 
n 

Show that {f,,} converges to a continuous function, but not uniformly. Use the 
series I: fn to show that absolute convergence, even for all x, does not imply uni
f or1n convergence. 

6. Prove that the series 

converges uni'for1nly in every bounded interval, but does not converge absolutely 
for any value of x. 

7. For n = 1, 2, 3, ... , x real, put 

X 
fn(x) = 1 + nx2. 

Show that {In} converges uniformly to a function/, and that the equation 

f'(x) = Iimf~(x) 
ft ➔ 0() 

is correct if x ¥= 0, but false if x = 0. 
8. If 

0 
I(x) = l 

(x ~0), 
(x > 0), 

if {xn} is a sequence of distinct points of (a, b), and if I: I en I converges, prove that 
the series 

0() 

f(x) = L Cn l(x - x,.) 
n•1 

(a~x~b) 

converges uniformly, and that f is continuous for every x ¥= Xn • 

9. Let {In} be a sequence of continuous functions which converges uniformly to a 
function f on a set E. Prove that 

lim fn(xn) = f(x) 
n➔ oo 

for every sequence of points Xn e E such that Xn ► x, and x e E. Is the converse of 
this true? 
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10. Letting (x) denote the fractional part of the real number x (see Exercise 16, Chap. 4, 
for the definition), consider the function 

f(x) = f (n~) 
n•l n 

(x real). 

Find all discontinuities of f, and show that they form a countable dense set. 
Show that f is nevertheless Riemann-integrable on every bounded interval. 

11. Suppose {f,.}, {gn} are defined on E, and 
(a) ~In has uniformly bounded partial sums; 
(b) Un ► 0 uniformly on E; 
(c) U1(x) ~U2(x) ~g3(x) ~ · · · for every x e E. 

Prove that ~ J,,gn converges uniformly on E. Hint: Compare with Theorem 

3.42. 
12. Suppose g andf,.(n = 1, 2, 3, ... ) are defined on (0, oo ), are Riemann-integrable on 

[t, T] whenever O < t < T < oo, If,, I -::;;, g, f,, ➔ f uniformly on every compact sub
set of (0, oo ), and 

Prove that 
0() 

lim 
n ➔ ao 0 

0() 

g(x) dx < oo. 
0 

0() 

f,,(x) dx = f(x) dx. 
0 

(See Exercises 7 and 8 of Chap. 6 for the relevant definitions.) 
This is a rather weak form of Lebesgue's dominated convergence theorem 

(Theorem 11.32). Even in the context of the Riemann integral, uniform conver
gence can be replaced by pointwise convergence if it is assumed that .f e g,f. (See 
the articles by F. Cunningham in Math. Mag., vol. 40, 1967, pp. 179-186, and 
by H. Kestelman in Amer. Math. Monthly, vol. 77, 1970, pp. 182-187.) 

13. Assume that {f,.} is a sequence of monotonically increasing functions on R 1 with 
0 s.f,,(x) s. 1 for all x and all n. 
(a) Prove that there is a function/ and a sequence {nk} such that 

f(x) = lim f,.k(x) 
k➔ ao 

for every x e R 1
• (The existence of such a pointwise convergent subsequence is 

usually called Belly's selection theorem.) 
(b) If, moreover, f is continuous, prove that f,," ➔ f uniformly on compact sets. 

Hint: (i) Some subsequence {f,,1} converges at all rational points r, say, to 
/'(r ). (ii) Define f(x), for any x e R 1

, to be sup f(r ), the sup being taken over all 
r s. x. (iii) Show that /n1(x) ► /(x) at every x at which / is continuous. (This is 
where monotonicity is strongly used.) (iv) A subsequence of {f,.1} converges at 
every point of discontinuity of f since there are at most countably many such 
points. This proves (a). To prove (b), modify your proof of (iii) appropriately. 



168 PRINCIPLES OF MATHEMATICAL ANALYSIS 

14. Let I be a continuous real function on R 1 with the following properties: 
0 s. l(t) s 1,l(t + 2) = /(t) for every t, and 

0 
f(t) = l 

Put <l>(t) = (x(t), y(t)), where 

0() 

x(t) = L 2-n1(32n-1t), 
n•l 

(0 s. ts. t) 
(! s. ts. 1). 

0() 

y(t) = L 2-nl(32nt). 
n=l 

Prove that <I> is continuous and that <I> maps / = [O, 1] onto the unit square / 2 c: R 2 • 

If fact, show that <I> maps the Cantor set onto / 2 • 

Hint: Each (xo, Yo) e / 2 has the form 

0() 

Xo = L 2-na2n-1, 
n=l 

where each a, is O or 1. If 

0() 

0() 

Yo= L 2-na2n 
n=t 

to= l: 3- 1 - 1(2a,) 
I= 1 

show that/(3"to) =a", and hence that x(to) = Xo, y(to) =Yo. 
(This simple example of a so-called '' space-filling curve'' is due to I. J. 

Schoenberg, Bull. A.M.S., vol. 44, 1938, pp. 519.) 
15. Suppose/'is a real continuous function on R 1,ln(t) =l(nt) for n =1, 2, 3, ... , and 

{/~} is equicontinuous on [O, 1]. What conclusion can you draw about I? 
16. Suppose {In} is an equicontinuous sequence of functions on a compact set K, and 

{In} converges pointwise on K. Prove that {f,.} converges uniformly on K. 
17. Define the notions of uniform convergence and equicontinuity for mappings into 

any metric space. Show that Theorems 7.9 and 7.12 are valid for mappings into 
any metric space, that Theorems 7.8 and 7.11 are valid for mappings into any 
complete metric space, and that Theorems 7.10, 7.16, 7.17, 7.24, and 7.25 hold for 
vector-valued functions, that is, for mappings into any R". 

18. Let {In} be a uniformly bounded sequence of functions which are Riemann-inte
grable on [a, b ], and put 

X 

Fn(X) = fn(t) dt (as x s. b). 
a 

Prove that there exists a subsequence {Fn"} which converges uniformly on [a, b]. 
19. Let K be a compact metric space, let S be a subset of <t'(K). Prove that Sis compact 

(with respect to the metric defined in Section 7.14) if and only if S is uniformly 
closed, pointwise bounded, and equicontinuous. (If S is not equicontinuous, 
then S contains a sequence which has no equicontinuous subsequence, hence has 
no subsequence that converges uniformly on K.) 
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20. If f is continuous on [O, 1] and if 

1 

f(x)x" dx = 0 (n = 0, 1, 2, ... ), 
0 

prove that /(x) = 0 on [O, 1]. Hint: The integral of the product off with any 
1 

polynomial is zero. Use the Weierstrass theorem to show that 
O 

/
2(x) dx = 0. 

21. Let K be the unit circle in the complex plane (i.e., the set of all z with I z I = 1 ), and 

let d be the algebra of all functions of the form 

N 

f(e 19
) = L Cne1

"
9 (0 real). 

n=O 

Then d separates points on Kand d vanishes at no point of K, but nevertheless 
there are continuous functions on K which are not in the uniform closure of d. 
Hint: For every/ e d 

lit 

f(e 19)e19 d0 = 0, 
0 

and this is also true for every/ in the closure of d. 
22. Assume/e al(~) on [a, b], and prove that there are polynomials Pn such that 

b 

lim 
n ➔ oo 

0 

(Compare with Exercise 12, Chap. 6.) 

23. Put Po= 0, and define, for n = 0, 1, 2, ... , 

x 2 -P;(x) 
Pn+i(x) =Pn(X) + 

2 
. 

Prove that 

lim Pn(x) = lxl, 
n ➔ ao 

uniformly on [-1, 1]. 
(This makes it possible to prove the Stone-Weierstrass theorem without first 

proving Theorem 7.26.) 

Hint: Use the identity 

lxl+Pn(X) 
lxl -Pn+i(x) = [!xi -Pn(x)] 1-

2 

to prove that O s.Pn(x) s.Pn+i(x) s. !xi if !xi s.1, and that 

IX I n 2 
IX I - Pn(X) S. IX I 1 - 2 < n + l 

if Ix I s. 1. 
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24. Let X be a metric space, with metric d. Fix a point a e X. Assign to each p e X 
the function JP defined by 

fp(x) = d(x, p) - d(x, a) (x e X). 

Prove that I /,,(x) Is. d(a,p) for all x e X, and that therefore JP e ~(X). 
Prove that 

11111 - hll = d(p, q) 
for all p, q e X. 

If <I>(p) = f,, it follows that <I> is an isometry (a distance-preserving mapping) 
of X onto <P(X) c: ~(X). 

Let Y be the closure of <P(X) in ~(X). Show that Y is complete. 
Conclusion: X is isometric to a dense subset of a complete metric space Y. 

(Exercise 24, Chap. 3 contains a different proof of this.) 
25. Suppose <p is a continuous bounded real function in the strip defined by 

0 s x s 1, - oo < y < oo. Prove that the initial-value problem 

y' = <p(x, y), y(O) = C 

has a solution. (Note that the hypotheses of this existence theorem are less stringent 
than those of the corresponding uniqueness theorem; see Exercise 27, Chap. 5.) 

Hint: Fix n. For i = 0, ... , n, put x, = i/n. Let In be a continuous function 

on [O, 1] such that fn(O) = c, 

J~(t) = <p(x,, fn(x,)) if Xt < t < Xt + 1, 

and put 

L\n(t) = f~(t)- <p(t,fn(t)), 

except at the points x,, where L\n(t) = 0. Then 

X 

fn(X) = C + [<p(t,[n(t)) + L\n(t)] dt. 
0 

Choose M < oo so that I <p I s M. Verify the following assertions. 

(a) If~ I s. M, I L\n I s. 2M, L\" E rJf, and I In I s. I c I + M = M1, say, on [O, l], for 
all n. 

(b) {f,.} is equicontinuous on [O, 1], since I/~ I s. M. 
(c) Some {In"} converges to some/, uniformly on [O, 1]. 
(d) Since <p is uniformly continuous on the rectangle Os. x s. 1, !YI s. M1, 

<p(t,fnk(t))- ➔ <p(t,f(t)) 

uniformly on [O, 1]. 
(e) L\n(t) ➔ 0 uniformly on [0, 1], since 

An(t) = <p(x,, fn(x,)) - <p(t, f,.(t)) 
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(/) Hence 
X 

/(x) = c + <p(t,f(t)) dt. 
0 

This f is a solution of the given problem. 
26. Prove an analogous existence theorem for the initial-value problem 

y' = cl»(x, y), y(O) = c, 

where now c e Rk, ye Rk, and «z, is a continuous bounded mapping of the part of 
Rk+i defined by O ~ x ~ 1, ye R" into R". (Compare Exercise 28, Chap. 5.) Hint: 
Use the vector-valued version of Theorem 7.25. 



SOME SPECIAL FUNCTIONS 

POWER SERIES 

In this section we shall derive some properties of functions which are represented 
by power series, i.e., functions of the form 

00 

(I) f(x) = L CnXn 
n=O 

or, more generally, 
00 

(2) f(x) = L cn(X - a)n. 
n=O 

These are called analytic functions. 
We shall restrict ourselves to real values of x. Instead of circles of con

vergence (see Theorem 3.39) we shall therefore encounter intervals of conver
gence. 

If (1) converges for all x in (-R, R), for some R > 0 (R may be + oo), 
we say that/is expanded in a power series about the point x = 0. Similarly, if 
(2) converges for J x - a I < R, f is said to be expanded in a power series about 
the point x = a. As a matter of convenience, we shall often take a= 0 without 
any loss of generality. 
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8.1 Theorem Suppose the series 

(3) 

converges for Ix I < R, and define 
00 

(4) f(x) = I CnXn (IX I < R). 
n=O 

Then (3) converges uniformly on [ - R + 8, R - 8 ], no matter which 8 > 0 
is chosen. The function f is continuous and differentiable in ( - R, R), and 

(5) 
00 

f'(x) = I ncnxn-l (lxl<R). 
n=l 

Proof Let 8 > 0 be given. For Ix I ~ R - 8, we have 

I C nXn I ~ I C n( R - 8 )n I ; 
and since 

:f.cn(R -8) n 

converges absolutely ( every power series converges absolutely in the 
interior of its interval of convergence, by the root test), Theorem 7.10 
shows the uniform convergence of (3) on [-R + 8, R - 8]. 

Since jn ➔ I as n ➔ oo, we have 

lim sup jnl cnl = lim sup 11 cnl, 
n-+ oo n-+ oo 

so that the series (4) and (5) have the same interval of convergence. 
Since (5) is a power series, it converges uniformly in [ -R + 8, 

R - 8], for every 8 > 0, and we can apply Theorem 7.17 (for series in
stead of sequences). It follows that (5) holds if Ix I ~ R - 8. 

But, given any x such that Ix I < R, we can find an 8 > 0 such that 
Ix I < R - 8. This shows that (5) holds for Ix I < R. 

Continuity off follows from the existence off' (Theorem 5.2). 

Corollary Under the hypotheses of Theorem 8.1, f has derivatives of all 
orders in ( - R, R), which are given by 

00 

(6) f<k>(x) = I n(n - I)··· (n - k + I)cnxn-k. 
n=k 

In particular, 

(7) (k = 0, I, 2, ... ). 

(Here f< 0> means f, and f<k> is the kth derivative off, for k = I, 2, 3, ... ). 



174 PRINCIPLES OF MATHEMATICAL ANALYSIS 

Proof Equation (6) follows if we apply Theorem 8.1 successively to f, 
f', f", . . . . Putting x = 0 in (6), we obtain (7). 

Formula (7) is very interesting. It shows, on the one hand, that the 
coefficients of the power series development off are determined by the values 
off and of its derivatives at a single point. On the other hand, if the coefficients 
are given, the values of the derivatives off at the center of the interval of con
vergence can be read off immediately from the power series. 

Note, however, that although a function f may have derivatives of all 
orders, the series Icn x", where en is computed by (7), need not converge to f(x) 
for any x #= 0. In this case, f cannot be expanded in a power series about x = 0. 
For if we had/(x) = Ianx", we should have 

n !an = 1<n>(o); 

hence an = cn . An example of this situation is given in Exercise I. 
If the series (3) converges at an endpoint, say at x = R, then/is continuous 

not only in ( - R, R), but also at x = R. This follows from Abel's theorem (for 
simplicity of notation, we take R = I): 

8.2 Theorem Suppose Icn converges. Put 

00 

f(x) = L CnXn (-I <x< I). 
n=O 

Then 

00 

(8) limf(x) = L Cn, 
x-+1 n=O 

Proof Let Sn= Co+ ... + Cn, S-1 = 0. Then 

m m m-1 
L CnXn = L (sn - Sn-1)x" = (I - x) L SnXn + Sm~• 

n=O n=O n=O 

For I xi < I, we let m ➔ co and obtain 

00 

(9) f(x) = (I - x) L snx". 
n=O 

Suppose s = lim sn. Let e > 0 be given. Choose N so that n > N 

implies 
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Then, since 

00 

(I - x) L xn = I (IX I < I), 
n=O 

we obtain from (9) 

if x > I - o, for some suitably chosen o > 0. This implies (8). 

As an application, let us prove Theorem 3.51, which asserts: lf"i:,an, "i:,bn, 
"i:,cn, converge to A, B, C, and if en = a0 bn + · · · + an b0 , then C = AB. We let 

00 00 00 

f(x) = L an xn, g(x) = L bnxn, h(x) = L Cn Xn, 
n=O n=O n=O 

for O ::5: x ::5: I. For x < 1, these series converge absolutely and hence may be 
multiplied according to Definition 3.48; when the multiplication is carried out, 
we see that 

(10) f(x) · g(x) = h(x) (0 ::5: x < I). 

By Theorem 8.2, 

(11) f(x) > A, g(x) ➔ B, h(x) ➔ C 

as x , I. Equations (10) and (II) imply AB = C. 
We now require a theorem concerning an inversion in the order of sum

mation. (See Exercises 2 and 3.) 

8.3 Theorem Given a double sequence {a,j}, i = 1, 2, 3, ... , j = I, 2, 3, ... , 
suppose that 

(12) (i=l,2,3, ... ) 

and r.b, converges. Then 

(13) 

Proof We could establish (13) by a direct procedure similar to (although 
more involved than) the one used in Theorem 3.55. However, the following 
method seems more interesting. 
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(14) 

(15) 

(16) 

Let Ebe a countable set, consisting of the points x0 , x1, x 2 , ••• , and 
suppose Xn ► x 0 as n ► oo. Define 

00 

fi(xo) = L aii (i = 1, 2, 3, ... ), 
j=1 

n 

fi(xn) = L aii (i, n = I, 2, 3, ... ), 
j=1 

00 

g(x) = L fi(x) (x e E). 
i= 1 

Now, (14) and (15), together with (12), show that each Ji is con
tinuous at x0 • Since lf;(x) I:::; b; for x e E, (16) converges uniformly, so 
that g is continuous at x 0 (Theorem 7.11). It follows that 

00 00 00 

L L aii = L /;(xo) = g(xo) = lim g(xn) 
i=lj=l i=l n-+oo 

oo oo n 

= lim L f;(xn) = lim L L a;i 
n-+ooi=l n-+oo i=l j=l 

n oo 0000 

= lim " " a .. = '°' " a .. L.,. L.,. IJ L.,. L.,. IJ ' 
n-+ooj=li=l j=li=l 

8.4 Theorem Suppose 

00 

f(x) = L en xn, 
n=O 

the series converging in Ix I < R. If -R < a < R, then f can be expanded in a 
power series about the point x = a which converges in Ix - a I < R - I a I , and 

oo J<n>(a) 
f (x) = L -- (x - a)n 

n=O n ! 
(17) (Ix - a I < R - I a I). 

This is an extension of Theorem 5.15 and is also known as Taylor's 
theorem. 

Proof We have 

00 

f(x) = L cn[(x - a) + a]n 
n=O 

00 n n 
= Len L m n=O m=O 

OC) OC) n 
I I -- m m=O n=m 



(18) 

(19) 
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This is the desired expansion about the point x = a. To prove its validity, 
we have to justify the change which was made in the order of summation. 
Theorem 8.3 shows that this is permissible if 

converges. But (18) is the same as 

00 

L I Cn I · (IX - a I + I a I )n, 
n=O 

and (19) converges if Ix - a I + I a I < R. 
Finally, the form of the coefficients in (17) follows from (7). 

It should be noted that (17) may actually converge in a larger interval than 
the one given by Ix - a I < R - I a I . 

If two power series converge to the same function in ( - R, R), (7) shows 
that the two series must be identical, i.e., they must have the same coefficients. 
It is interesting that the same conclusion can be deduced from much weaker 
hypotheses: 

8.5 Theorem Suppose the series I:an xn and I:bn xn converge in the segment 
S = (-R, R). Let Ebe the set of all x e Sat which 

00 00 

(20) Lan~= L bn~· 
n=O n=O 

If E has a limit point in S, then an= bnfor n = 0, 1, 2, .... Hence (20) holds for 
all x e S. 

(21) 

Proof Put Cn = an - bn and 

00 

f(x) =Len~ (x ES). 
n=O 

Then f(x) = 0 on E. 
Let A be the set of all limit points of E in S, and let B consist of all 

other points of S. It is clear from the definition of ''limit point'' that B 
is open. Suppose we can prove that A is open. Then A and Bare disjoint 
open sets. Hence they are separated (Definition 2.45). Since S = A u B, 
and Sis connected, one of A and B must be empty. By hypothesis, A is 
not empty. Hence B is empty, and A = S. Since f is continuous in S, 
A c E. Thus E = S, and (7) shows that en = 0 for n = 0, 1, 2, ... , which 
is the desired conclusion. 
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(22) 

(23) 

(24) 

Thus we have to prove that A is open. If x0 e A, Theorem 8.4 shows 
that 

00 

f(x) = L dn(X - Xo)n ( I x - Xo I < R - I Xo I ). 
n=O 

We claim that dn = 0 for all n. Otherwise, let k be the smallest non
negative integer such that dk #= 0. Then 

f (x) = (x - x0)kg(x) ( / x - Xo I < R - I Xo I), 
where 

00 

g(x) = L dk+m(X - Xo)m. 
m=O 

Since g is continuous at x0 and 

g(xo) = dk #= 0, 

there exists a o > 0 such that g(x) #= 0 if Ix - x0 I < o. It follows from 
(23) that f(x) #= 0 if O < l x - x0 l < o. But this contradicts the fact that 
x0 is a limit point of E. 

Thus dn = 0 for all n, so that/(x) = 0 for all x for which (22) holds, 
i.e., in a neighborhood of x0 • This shows that A is open, and completes 
the proof. 

THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS 

We define 

(25) 
oo Zn 

E(z) = L 
1 n=O n. 

The ratio test shows that this series converges for every complex z. Applying 
Theorem 3.50 on multiplication of absolutely convergent series, we obtain 

oo Zn oo Wm oo n ZkWn-k 

E(z)E(w) = L - L - = L L --
n=o n! m=O m! n=O k=O k!(n - k)! 

- f 1 f n k n -k - ~ (z + w )n 
- L, - L, z w - L, ---, 

n=O n! k=O k n=O n! 

which gives us the important addition formula 

(26) 

(27) 

E(z + w) = E(z)E(w) 

One consequence is that 

(z, w complex). 

E(z)E( - z) = E(z - z) = E(O) = 1 (z complex). 
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This shows that E(z) #= 0 for all z. By (25), E(x) > 0 if x > 0; hence (27) shows 
that E(x) > 0 for all real x. By (25), E(x) ► + oo as x ► + oo; hence (27) shows 
that E(x) ➔ 0 as x ➔ - oo along the real axis. By (25), 0 < x < y implies that 
E(x) < E(y); by (27), it follows that E( - y) < E( - x); hence E is strictly in
creasing on the whole real axis. 

The addition formula also shows that 

(28) lim E(z + h) - E(z) = E(z) lim E(h) - I = E(z); 
h=O h h=O h 

the last equality follows directly from (25). 
Iteration of (26) gives 

(29) 

Let us take z1 = · · · =Zn= I. Since E(l) = e, where e is the number defined 
in Definition 3.30, we obtain 

(30) E(n) = en (n = I, 2, 3, ... ). 

If p = n/m, where n, m are positive integers, then 

(31) 

so that 

(32) 

[E(p)]m = E(mp) = E(n) = en, 

E(p) = eP (p > 0, p rational). 

It follows from (27) that E(-p) = e-p if p is positive and rational. Thus (32) 
holds for all rational p. 

In Exercise 6, Chap. 1, we suggested the definition 

(33) 

where the sup is taken over all rational p such that p < y, for any real y, and 
x > I. If we thus define, for any real x, 

(34) (p < x, p rational), 

the continuity and monotonicity properties of E, together with (32), show that 

(35) E(x) = ex 

for all real x. Equation (35) explains why E is called the exponential function. 
The notation exp (x) is often used in place of ex, expecially when x is a 

complicated expression. 
Actually one may very well use (35) instead of (34) as the definition of ex; 

(35) is a much more convenient starting point for the investigation of the 
properties of ex. We shall see presently that (33) may also be replaced by a 
more convenient definition [see (43)]. 
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We now revert to the customary notation, ex, in place of E(x), and sum
marize what we have proved so far. 

8.6 Theorem Let ex be defined on R 1 by (35) and (25). Then 
(a) ex is continuous and differentiable for all x,· 
(b) (ex)' = ex; 
(c) ex is a strictly increasing function of x, and ex> O; 
(d) ex+y = eXeY; 
( e) ex > + oo as x > + oo, ex > 0 as x > - oo ; 
(f) limx ... + 00xne- x = 0, for every n. 

Proof We have already proved (a) to (e); (25) shows that 

for x > 0, so that 

Xn+l 
X 

e > (n + I)! 

n-x (n+l)! 
xe <---, 

X 

and (f) follows. Part (f) shows that ex tends to + oo ''faster'' than any 
power of x, as x > + oo. 

Since E is strictly increasing and differentiable on R1
, it has an inverse 

function L which is also strictly increasing and differentiable and whose domain 
is E(R1 

), that is, the set of all positive numbers. L is defined by 

(36) 

or, equivalently, by 

(37) 

E(L(y)) = y 

L(E(x)) = x 

(y > 0), 

(x real). 

Dift"erentiating (37), we get (compare Theorem 5.5) 

L'(E(x)) · E(x) = 1. 

Writing y = E(x), this gives us 

'( 1 Ly)=-
y 

(38) (y > 0). 

Taking x = 0 in (37), we see that L(l) = 0. Hence (38) implies 

(39) L(y)= 
Ydx -. 
1 X 
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Quite frequently, (39) is taken as the starting-point of the theory of the logarithm 
and the exponential function. Writing u = E(x), v = E(y), (26) gives 

L(uv) = L(E(x) • E(y)) = L(E(x + y)) = x + y, 

so that 

(40) L(uv) = L(u) + L(v) (u > 0, V > 0). 

This shows that L has the familiar property which makes logarithms useful 
tools for computation. The customary notation for L(x) is of course log x. 

As to the behavior of log x as x ► + oo and as x ► 0, Theorem 8.6(e) 
shows that 

(41) 

log x ► + oo 

log x ► -oo 

It is easily seen that 

as x ► + oo, 

as x ► 0. 

xn = E(nL(x)) 

if x > 0 and n is an integer. Similarly, if m is a positive integer, we have 

(42) 
1 

x 11m = E - L(x) , 
m 

since each term of (42), when raised to the mth power, yields the corresponding 
term of (36). Combining (41) and (42), we obtain 

(43) x« = E(<XL(x)) = e«logx 

for any rational <X. 
We now define x«, for any real <X and any x > 0, by (43). The continuity 

and monotonicity of E and L show that this definition leads to the same result 
as the previously suggested one. The facts stated in Exercise 6 of Chap. 1, are 
trivial consequences of ( 43). 

(44) 

If we differentiate {43), we obtain, by Theorem 5.5, 

(X 

(x«)' = E(<XL(x)) · - = <Xx«- 1
• 

X 

Note that we have previously used (44) only for integral values of <X, in which 
case (44) follows easily from Theorem 5.3(b). To prove (44) directly from the 
definition of the derivative, if x« is defined by (33) and <X is irrational, is quite 
troublesome. 

The well-known integration formula for x« follows from (44) if <X =t:- -1, 
and from (38) if <X = -1. We wish to demonstrate one more property of log x, 
namely, 
(45) lim x-« 1og x = 0 

x-+ + oo 
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for every tx > 0. That is, log x > + oo ''slower'' than any positive power of x, 
as x > + oo. 

For if O < e < tx, and x > 1, then 

X X 

- X - ex log X = X - ex f - 1 dt < X - ex te - 1 dt 
1 1 

Xe - 1 Xe-ex 
= x-cx. --< --, 

8 8 

and ( 45) follows. We could also have used Theorem 8.6(/) to derive ( 45). 

THE TRIGONOMETRIC FUNCTIONS 

Let us define 

(46) 
1 

C(x) = 2 [E(ix) + E( - ix)], 
1 

S(x) = 
2

i [E(ix) - E(-ix)]. 

We shall show that C(x) and S(x) coincide with the functions cos x and sin x, 
whose definition is usually based on geometric considerations. By (25), E(z) = 
E(z). Hence (46) shows that C(x) and S(x) are real for real x. Also, 

(47) E(ix) = C(x) + iS(x). 

Thus C(x) and S(x) are the real and imaginary parts, respectively, of E(ix), if 
x is real. By (27), 

so that 

(48) 

I E(ix) 12 = E(ix)E(ix) = E(ix)E( -ix) = 1, 

\E(ix)I = 1 (x real). 

From ( 46) we can read off that C(O) = 1, S(O) = 0, and (28) shows that 

(49) C'(x) = -S(x), S'(x) = C(x). 

We assert that there exist positive numbers x such that C(x) = 0. For 
suppose this is not so. Since C(O) = 1, it then follows that C(x) > 0 for all 
x > 0, hence S'(x) > 0, by (49), hence Sis strictly increasing; and since S(O) = 0, 
we have S(x) > 0 if x > 0. Hence if O < x < y, we have 

(50) 
y 

S(x)(y - x) < S(t) dt = C(x) - C(y) s; 2. 
I .I 

X 

The last inequality follows from (48) and (47). Since S(x) > 0, (50) cannot be 
true for large y, and we have a contradiction. 
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Let x0 be the smallest positive number such that C(x0 ) = 0. This exists, 
since the set of zeros of a continuous function is closed, and C(O) '#- 0. We 
define the number 7t by 

(51) 7t = 2x0 • 

Then C(1t/2) = 0, and (48) shows that S(1t/2) = ± 1. Since C(x) > 0 in 
(0, 1t/2), S is increasing in (0, 1t/2); hence S(1t/2) = 1. Thus 

• 
E 11:l 

2 
• = ,, 

and the addition formula gives 

(52) 

hence 

E(1r:i) = -1, E(21r:i) = 1; 

(53) E(z + 211:i) = E(z) (z complex). 

8.7 Theorem 

(a) The function Eis periodic, with period 211:i. 
(b) The functions C and Sare periodic, with period 21t. 
(c) If O < t < 211:, then E(it) #:- 1. 
(d) If z is a complex number ¾'ith I z I = 1, there is a unique t in [O, 21t) 

such that E(it) = z. 

Proof By (53), (a) holds; and (b) follows from (a) and (46). 
Suppose O < t < 11:/2 and E(it) = x + iy, with x, y real. Our preceding 

work shows that O < x < 1, 0 < y < 1. Note that 

E(4it) = (x + iy)4 = x4 
- 6x2y2 + y4 + 4ixy(x2 - y2). 

If E(4it) is real, it follows that x2 - y2 = O; since x2 + y2 = 1, by (48), 
we have x2 = y 2 = ½, hence E(4it) = -1. This proves (c). 

If O :S: t1 < t2 < 21t, then 

E(it2)[E(it1)]- 1 = E(it2 - it1) #:- 1, 

by (c). This establishes the uniqueness assertion in (d). 
To prove the existence assertion in (d), fix z so that I z I = 1. Write 

z = x + iy, with x and y real. Suppose first that x :2:: 0 and y :2:: 0. On 
[O, 1t/2], C decreases from 1 to 0. Hence C(t) = x for some t e [O, 1t/2]. 
Since C2 + S2 = 1 and S :2:: O on [O, 1t/2], it follows that z = E(it ). 

If x < 0 and y :2:: 0, the preceding conditions are satisfied by - iz. 
Hence -iz = E(it) for some t e [O, 1t/2], and since i = E(ni/2), we obtain 
z = E(i(t + 1t/2)). Finally, if y < 0, the preceding two cases show that 
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- z = E(it) for some t e (0, tr). Hence z = - E(it) = E(i(t + tr)). 
This proves (d), and hence the theorem. 

It follows from (d) and ( 48) that the curve y defined by 

(54) y(t) = E(it) (0 s t S 2tr) 

is a simple closed curve whose range is the unit circle in the plane. Since 
y'(t) = iE(it), the length of y is 

2n 

I y'(t) I dt = 2tr, 
0 

by Theorem 6.27. This is of course the expected result for the circumference of 
a circle of radius 1. It shows that tr, defined by (51), has the usual geometric 
significance. 

In the same way we see that the point y(t) describes a circular arc of length 
t0 as t increases from O to t0 • Consideration of the triangle whose vertices are 

z1 = 0, z2 = y(t0), z3 = C(t0) 

shows that C(t) and S(t) are indeed identical with cos t and sin t, if the latter 
are defined in the usual way as ratios of the sides of a right triangle. 

It should be stressed that we derived the basic properties of the trigono
metric functions from (46) and (25), without any appeal to the geometric notion 
of angle. There are other nongeometric approaches to these functions. The 
papers by W. F. Eberlein (Amer. Math. Monthly, vol. 74, 1967, pp. 1223-1225) 
and by G. B. Robison (Math. Mag., vol. 41, 1968, pp. 66-70) deal with these 
topics. 

THE ALGEBRAIC COMPLETENESS OF THE COMPLEX FIELD 

We are now in a position to give a simple proof of the fact that the complex 
field is algebraically complete, that is to say, that every nonconstant polynomial 
with complex coefficients has a complex root. 

8.8 Theorem Suppose a0 , ••• , an are complex numbers, n ~ 1, an =I=- 0, 
n 

P(z) = L ak zk. 
0 

Then P(z) = 0 for some complex number z. 

Proof Without loss of generality, assume an= 1. Put 

(55) µ = inf I P(z) I (z complex) 

If lzl = R, then 

(56) IP(z)I ~ Rn[l - lan-1 IR-1 - · · · - laolR-n]. 
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The right side of (56) tends to oo as R > oo. Hence there exists R0 such 
that I P(z) I > µ if I z I > R0 • Since IP I is continuous on the closed disc 
with center at O and radius R0 , Theorem 4.16 shows that I P(z0) I = µ for 
some z0 • 

We claim thatµ= 0. 
If not, put Q(z) = P(z + z0)/P(z0). Then Q is a nonconstant poly

nomial, Q(O) = 1, and I Q(z) I :2:: 1 for all z. There is a smallest integer k, 
1 :s; k :s; n, such that 

(57) Q(z) = 1 + bkzk + · · · + bnzn, bk =I- 0. 

By Theorem 8.7(d) there is a real 0 such that 

(58) e1k8bk = - I bk I• 
If r > 0 and rklbkl < 1, (58) implies 

11 + bk rkeik8 I = 1 - rk I bk I , 
so that 

I Q(rei8)1 ~ 1 - rk{lbkl - rlbk+1 I - · · · - ,n-klbnl}, 

For sufficiently small r, the expression in braces is positive; hence 
I Q(rei8) I < 1, a contradiction. 

Thus µ = 0, that is, P(z0) = 0. 

Exercise 27 contains a more general result. 

FOURIER SERIES 

8.9 Definition A trigonometric polynomial is a finite sum of the form 
N 

(59) f(x) = a0 + I (an cos nx + bn sin nx) (x real), 
n=l 

where a0 , ••• , aN, b1 , ... , bN are complex numbers. On account of the identities 
( 46), (59) can also be written in the form 

(60) 
N 

f (x) = L en einx 
-N 

(x real), 

which is more convenient for most purposes. It is clear that every trigonometric 
polynomial is periodic, with peribd 2n. 

If n is a nonzero integer, e1nx is the derivative of einx/in, which also has 
period 2n. Hence 

(61) 
1 n 1 

e'nx dx = 
2n -n 0 

(if n = 0), 
(if n = ±I, ± 2, ... ). 



186 PRINCIPLES OF MATHEMATICAL ANALYSIS 

Let us multiply (60) by e- imx, where m is an integer; if we integrate the 
product, (61) shows that 

(62) 
1 ff 

C - f(x)e- imx dx 
m = 2tr -n 

for Im I ~ N. If Im I > N, the integral in (62) is 0. 
The following observation can be read off from (60) and (62): The 

-
trigonometric polynomial f, given by (60), is real if and only if c _n = Cn for 
n = 0, ... , N. 

In agreement with (60), we define a trigonometric series to be a series of 
the form 

(63) (x real); 

the Nth partial sum of (63) is defined to be the right side of (60). 
If f is an integrable function on [ - tr, tr], the numbers cm defined by (62) 

for all integers m are called the Fourier coefficients off, and the series (63) formed 
with these coefficients is called the Fourier series off. 

The natural question which now arises is whether the Fourier series off 
converges to f, or, more generally, whether f is determined by its Fourier series. 
That is to say, if we know the Fourier coefficients of a function, can we find 
the function, and if so, how? 

The study of such series, and, in particular, the problem of representing a 
given function by a trigonometric series, originated in physical problems such 
as the theory of oscillations and the theory of heat conduction (Fourier's 
''Theorie analytique de la chaleur'' was published in 1822). The many difficu,t 
and delicate problems which arose during this study caused a thorough revision 
and reformulation of the whole theory of functions of a real variable. Among 
many prominent names, those of Riemann, Cantor, and Lebesgue are intimately 
connected with this field, which nowadays, with all its generalizations and rami
fications, may well be said to occupy a central position in the whole of analysis. 

We shall be content to derive some basic theorems which are easily 
accessible by the methods developed in the preceding chapters. For more 
thorough investigations, the Lebesgue integral is a natural and indispensable 
tool. 

We shall first study more general systems of functions which share a 
property analogous to (61). 

8.10 Definition Let {</>n} (n = 1, 2, 3, ... ) be a sequence of complex functions 
on [a, b ], such that 

b 

(64) </>n(X)</>m(X) dx = 0 (n =I- m). 
a 
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Then {</>n} is said to be an orthogonal system of functions on [a, b]. If, in addition, 

b 

(65) I </>n(x)l 2 dx = 1 
a 

for all n, { </>n} is said to be orthonormal. 
For example, the functions (21r)-te 1nx form an orthonormal system on 

[ - n, n]. So do the real functions 

1 cos x sin x cos 2x sin 2x 
• • • 

J21r' J; ' ✓ 1t ' J; ' J; ' . 
If { </>n} is orthonormal on [a, b] and if 

b 

(66) Cn = f(t )</Jn(t) dt (n = 1, 2, 3, ... ), 
a 

we call cn the nth Fourier coefficient off relative to {</>n}. We write 

(67) 

and call this series the Fourier series off (relative to { </>n} ). 
Note that the symbol ~ used in (67) implies nothing about the conver

gence of the series; it merely says that the coefficients are given by (66). 
The following theorems show that the partial sums of the Fourier series 

off have a certain minimum property. We shall assume here and in the rest of 
this chapter that/ e ~, although this hypothesis can be weakened. 

8.11 Theorem Let { </>n} be orthonormal on [a, b ]. Let 

n 

(68) Sn(X) = L Cm </>m(X) 
m=l 

be the nth partial sum of the Fourier series of./, and suppose 

(69) 

Then 

(70) 

n 

tn(x) = L Ym </>m(x). 
m=l 

b b 

If - Sn 1
2 dx s; If - tn 12 dx, 

a a 

and equality holds if and only if 
(71) (m=l, ... ,n). 

That is to say, among all functions tn, Sn gives the best possible mean 
squ".re approximation to f. 
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(72) 

Proof Let J denote the integral over [a, b ], l: the sum from 1 to n. Then 

fin = f L Ym'Pm = L Cm Ym 

by the definition of {cm}, 

since { </>m} is orthonormal, and so 

lfl 2 
- fin - ftn + I tn I 2 

If 12 
- L Cm Ym - L Cm Ym + L Ym Ym 

= If 12 
- L I Cm 12 + L I Ym - Cm 12

, 

--

which is evidently minimized if and only if Ym = cm • 
Putting Ym = cm in this calculation, we obtain 

b n b 

lsn(x)l 2 dx = L lcml 2 ~ lf(x)l 2 dx, 
a 1 a 

since J If - tn I 2 :2: 0. 

8.12 Theorem If {</>n} is orthonormal on [a, b], and if 

then 

(73) 

In particular, 

(74) 

00 

f(x) ,_ L en </>n(X), 
n=l 

oo b 

L I en 12 ~ 1/(x) 12 dx. 
n= 1 a 

lim en= 0. 
n➔ oo 

Proof Letting n > oo in (72), we obtain (73), the so-called ''Bessel 
inequality." 

8.13 Trigonometric series From now on we shall deal only with the trigono
metric system. We shall consider functions f that have period 2n and that are 
Riemann-integrable on [ - re, re] (and hence on every bounded interval). The 
Fourier series off is then the series (63) whose coefficients en are given by the 
integrals (62), and 

(75) 
N 

sN(x) = sN(f; x) = L en e1
"x 

-N 
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is the Nth partial sum of the Fourier series off The inequality (72) now takes 
the form 

(76) 

In order to obtain an expression for sN that is more manageable than (75) 
we introduce the Dirichlet kernel 

(77) D ( ) 
_ ~ inx _ sin (N + ½)x 

Nx - L. e - . 
n= -N sin (x/2) 

The first of these equalities is the definition of DN(x). The second follows if 
both sides of the identity 

(eix _ l)DN(x) = ei(N+1)x _ e-iNx 

are multiplied by e- ix/l. 

By (62) and (75), we have 

N 1 n: 

(f ) '°' - f(t)e- int dt einx 
SN ; X = ~N 2n -n: 

I 11: N 
= - f(t) L ein(x- t) dt, 

2n -n: -N 

so that 

(78) 
n: I n 

-n: f(t)DN(x - t) dt = 
2
n -n:f(x - t)DN(t) dt. 

The periodicity of all functions involved shows that it is immaterial over which 
interval we integrate, as long as its length is 2rr. This shows that the two integrals 
in (78) are equal. 

We shall prove just one theorem about the pointwise convergence of 
Fourier series. 

8.14 Theorem If, for some x, there are constants b > 0 and M < oo such that 

(79) 

for all t e ( - b, b), then 

(80) 

Proof D~fine 

(81) 

lf(x + t)- f(x)I ~ Ml ti 

lim sN(f; x) = f (x). 
N➔ oo 

( ) 
f(x - t) - f(x) 

gt=----
sin (t/2) 
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for O < I t I ~ re, and put g(O) = 0. By the definition (77), 

1 n: 

2 
DN(x) dx = 1. 

TC -n: 

Hence (78) shows that 

1 · n: 1 
sN(f; x) - f(x) = 

2 
g(t) sin N + -

2 
t dt 

TC -n: 

1 n: t 1 n: 
= 

2 
g(t) cos - sin Nt dt + 

TC -n: 2 2rc -n: 

By (79) and (81), g(t) cos (t/2) and g(t) sin (t/2) are bounded. The last 
two integrals thus tend to O as N > oo, by (74). This proves (80). 

Corollary If f(x) = 0 for all x in some segment J, then lim sN(f; x) = 0 for 
every x e J. 

Here is another formulation of this corollary: 

If f (t) = g(t) for all t in some neighborhood of x, then 

s N(f; X) - s N(g; x) = s N(f - g ; x) > 0 as N ➔ oo. 

This is usually called the localization theorem. It shows that the behavior 
of the sequence {sN(f; x)}, as far as convergence is concerned, depends only on 
the values off in some (arbitrarily small) neighborhood of x. Two Fourier 
series may thus have the same behavior in one interval, but may behave in 
entirely different ways in some other interval. We have here a very striking 
contrast between Fourier series and power series (Theorem 8.5). 

We conclude with two other approximation theorems. 

8.15 Theorem If f is continuous (with period 2n) and if e > 0, then there is a 
trigonometric polynomial P such that 

IP(x) - f(x) I < e 
for all real x. 

Proof If we identify x and x + 2rc, we may regard the 2n-periodic func
tions on R1 as functions on the unit circle T, by means of the mapping 
x ➔ eix. The trigonometric polynomials, i.e., the functions of the form 
(60), form a self-adjoint algebra d, which separates points on T, and 
which vanishes at no point of T. Since Tis compact, Theorem 7.33 tells 
us that d is dense in ~(T). This is exactly what the theorem asserts. 

A more precise form of this theorem appears in Exercise 15. 
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8.16 Parseval's theorem Suppose f and g are Riemann-integrable functions 
with period 2n, and 

(82) 

Then 

(83) 

(84) 

(85) 

(86) 

(87) 

00 00 

f (x) ,_ L Cn einx, g(x) ,_ L Yn einx. 
-oo -oo 

lim 
1 

n lf(x) - sN(f; x) I 2 dx = 0, 
N➔ oo 2tr -n 

1 n oo 
f (x)g(x) dx = L Cn Yn, 

2n -n -oo 

Proof Let us use the notation 

l n 112 

llhll2= 2n -nlh(x)l
2

dx • 

Let 8 > 0 be given. Since f e ~ and f(n) = /( - n), the construction 
described in Exercise 12 of Chap. 6 yields a continuous 2n-periodic func
tion h with 

II/ - hll2 < 8. 

By Theorem 8.15, there is a trigonometric polynomial P such that 
I h(x) - P(x) / < 8 for all x. Hence llh - PII 2 < 8. If P has degree N0 , 

Theorem 8.11 shows that 

(88) I h - sN(h)ll2 ~ llh - Pl 2 < 8 

for all N ~ N 0 • By (72), with h - fin place off, 

(89) lsN(h) - sN(/)112 = llsN(h - /)112 ~ llh - /ll2 < 8. 

Now the triangle inequality (Exercise 11, Chap. 6), combined with 
(87), (88), and (89), shows that 

(90) llf- sN(f)ll2 < 38 (N ~ No), 

This proves (83). Next, 

(91) 
1 n N 1 n N 

sN(f)g dx = L en 
2 

einx g(x) dx = L en Yn, 
7r -n -N 1t -n -N 

and the Schwarz inequality shows that 

(92) Jg - sN(f)g ~ If- sN(f)lul ~ I/- sNl 2 lgl 2 
1/2 

, 
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which tends to 0, as N ➔ oo, by (83). Comparison of (91) and (92) gives 
(84). Finally, (85) is the special case g = f of (84). 

A more general version of Theorem 8.16 appears in Chap. 11. 

THE GAMMA FUNCTION 

This function is closely related to factorials and crops up in many unexpected 
places in analysis. Its origin, history, and development are very well described 
in an interesting article by P. J. Davis (Amer. Math. Monthly, vol. 66, 1959, 
pp. 849-869). Artin's book (cited in the Bibliography) is another good elemen
tary introduction. 

Our presentation will be very condensed, with only a few comments after 
each theorem. This section may thus be regarded as a large exercise, and as an 
opportunity to apply some of the material that has been presented so far. 

8.17 Definition For O < x < oo, 

00 

(93) r(x) = tx-ie-t dt. 
0 

The integral converges for these x. (When x < 1, both O and oo have to 
be looked at.) 

8.18 Theorem 
(a) The functional equation 

I'(x + 1) = xr(x) 

holds if O < x < oo. 
(b) I'(n + 1) = n!for n = I, 2, 3, .... 
(c) log r is convex on (0, oo ). 

Proof An integration by parts proves (a). Since r(l) = 1, (a) implies 
(b), by induction. If 1 < p < oo and (1/p) + (1/q) = 1, apply Holder's 
inequality (Exercise 10, Chap. 6) to (93), and obtain 

This is equivalent to (c). 

It is a rather surprising fact, discovered by Bohr and Mollerup, that 
these three properties characterize r completely. 
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8.19 Theorem If f is a positive function on (0, oo) such that 
(a) f(x + 1) = xf(x), 
(b) /(1) = 1, 
(c) log/ is convex, 

then f(x) = I'(x). 

Proof Since r satisfies (a), (b), and (c), it is enough to prove that/(x) is 
uniquely determined by (a), (b), (c), for all x > 0. By (a), it is enough to 
do this for x e (0, 1 ). 

Put <p = logf Then 

(94) <p(x + 1) = <p(x) + log x (0 < x < oo ), 

(95) 

<p(l) = 0, and <pis convex. Suppose O < x < 1, and n is a positive integer. 
By (94), <p(n + 1) = log(n !). Consider the difference quotients of <p on the 
intervals [n, n + 1], [n + 1, n + 1 + x], [n + 1, n + 2]. Since <p is convex 

1 <p(n + 1 + x) - <p(n + 1) 1 ( l) 
og n S -------- S og n + . 

X 

Repeated application of (94) gives 

<p(n + 1 + x) = <p(x) + log [x(x + 1) · · · (x + n)]. 

Thus 

0 S <p(x) - log 
n!nx l 

J S x log 
x( x + 1) · · · ( x + n) 

1 
1 + - . 

n 

The last expression tends to Oas n ➔ oo. Hence <p(x) is determined, and 
the proof is complete. 

As a by-product we obtain the relation 

. n !nx 
r(x) = l1m -----

n➔ oo x(x + 1) · · · (x + n) 

at least when O < x < 1 ; from this one can deduce that (95) holds for all x > 0, 
since r(x + 1) = x r(x). 

8.20 Theorem If x > 0 and y > 0, then 

(96) i tx-1(1 - t)y-1 dt = I'(x)r(y). 
O r(x + y) 

This integral is the so-called beta function B(x, y). 
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(97) 

Proof Note that B(l, y) = 1/y, that log B(x, y) is a convex function of 
x, for each fixed y, by Holder's inequality, as in Theorem 8.18, and that 

X 
B(x + 1, y) = --B(x, y). 

x+y 
To prove (97), perform an integration by parts on 

1 f X 

B(x + 1, y) = -- (1 - t)x+y-l dt. 
0 1 - t 

These three properties of B(x, y) show, for each y, that Theorem 8.19 
applies to the function f defined by 

r(x+y) 
f(x) = r(y) B(x, y). 

Hence f(x) = r(x). 

8.21 Some consequences The substitution t = sin2 0 turns (96) into 

(98) 2 n/
2 

(sin 0)2x-i (cos 0)2y-i d0 = r(x)r(y). 
O r(x+ y) 

The special case x = y = ½ gives 

(99) r(t) = Jrc. 
The substitution t = s2 turns (93) into 

00 

(100) r(x) = 2 s2x-i e-s
2 ds (0 < X < 00). 

0 

The special case x = ½ gives 

(101) 

By (99), the identity 

(102) 

00 -

e-s
2 ds = J n. 

-oo 

follows directly from Theorem 8.19. 

8.22 Stirling's formula This provides a simple approximate expression for 
r(x + 1) when xis large (hence for n! when n is large). The formula is 

(103) lim r(x+ l) = 1. 
x➔ oo (x/e)x J2nx 
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Here is a proof. Put t = x(l + u) in (93). This gives 

00 

(104) r(x + 1) = xx+ 1 e-x [(1 + u)e-u]x du. 
-1 

Determine h(u) so that h(O) = 1 and 

(105) (1 + u)e-u = exp 
u2 

-
2 

h(u) 

if -1 < u < oo, u ¥= 0. Then 

(106) 
2 

h(u) = 2 [u - log (1 + u)]. 
u 

It follows that h is continuous, and that h(u) decreases monotonically from oo 
to O as u increases from - 1 to oo. 

The substitution u = s J2/x turns (104) into 

(107) 1/Jx(s) ds 
-oo 

where 

( - x/2 < s < oo ), 

(s ~ -J x/2). 

Note the following facts about 1/1 x(s): 

(a) For every s, 1/Jx(s) ➔ e-s2 
as x ➔ oo. 

(b) The convergence in (a) is uniform on [ -A, A], for every A < oo. 
(c) Whens< 0, then O < 1/Jx(s) < e-s

2
• 

(d) Whens> 0 and x > 1, then O < 1/Jx(s) < i/11(s). 
(e) So 1/11 (s) ds < 00. 

The convergence theorem stated in Exercise 12 of Chap. 7 can therefore 

be applied to the integral (107), and shows that this integral converges to J n 
as x ) oo, by (101). This proves (103). 

A more detailed version of this proof may be found in R. C. Buck's 
''Advanced Calculus," pp. 216-218. For two other, entirely different, proofs, 
see W. Feller's article in Amer. Math. Monthly, vol. 74, 1967, pp. 1223-1225 
(with a correction in vol. 75, 1968, p. 518) and pp. 20-24 of Artin's book. 

Exercise 20 gives a simpler proof of a less precise result. 
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EXERCISES 

1. Define 

e-1/xZ 

f(x) = 
0 

(x =I= 0), 
(x = 0). 

Prove that f has derivatives of all orders at x = 0, and that J<n>(O) = 0 for 
n = 1, 2, 3, .... 

2. Let a,J be the number in the ith row andjth column of the array 

-1 0 0 0 • • • 

½ -1 0 0 • • • 

¼ ½ -1 0 • • • 

¼ i ½ -1 ••• 

• • • • • • • • • • • • • • • • • • • • • • • • • • 

so that 

Prove that 

3. Prove that 

0 
OtJ = -1 

2)-I 

LL Otj = -2, 
' J 

(i <j), 
(i = j), 
(i > j). 

LL Otj = 0. 
J ' 

if a,J ~ 0 for all i andj (the case + oo = + oo may occur). 
4. Prove the following limit relations: 

bx-1 
(a) lim --= log b 

x➔ O X 

(b) lim log (l + x) = 1. 
x➔ O X 

(c) lim (1 + x) 11x = e. 
x➔ O 

(d) lim 
n ➔ 00 

X n 

1+
n 

-eX - . 

(b > 0). 



5. Find the following limits 

( ) 1
. e - (1 + x) 1 tx 

a 1m-----. 
x➔ O X 

(b) lim n [n 11n - 1]. 
n➔ oo logn 

( ) I
. tan x - x 

C 1m ( )' x➔ O X 1 - COS X 

• 

(d) lim x - sin x . 
x ➔ O tan X - X 

6. Suppose /(x)/(y) = f(x + y) for all real x and y. 
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(a) Assuming that/ is differentiable and not zero, prove that 

f(x) = ecx 

where c is a constant. 
(b) Prove the same thing, assuming only that/ is continuous. 

7T 
7. If O < x < 2 , prove that 

2 sin x 
1 -<--< . 

7T X 

8. For n = 0, 1, 2, ... , and x real, prove that 

I sin nx I ::S:.: n I sin x I . 

Note that this inequality may be false for other values of n. For instance, 

I sin ½Tr I > ½ I sin TT I . 

9. {a) Put sN = 1 + (½) + · · · + (1/N). Prove that 

lim (sN - log N) 
N➔ OO 

exists. {The limit, often denoted by y, is called Euler's constant. Its numerical 
value is 0.5772 .... It is not known whether y is rational or not.) 
(b) Roughly how large must m be so that N = tom satisfies sN > 100? 

10. Prove that L 1/p diverges; the sum extends over all primes. 
(This shows that the primes form a fairly substantial subset of the positive 

integers.) 
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Hint: Given N, let Pi, ••• , P1c be those primes that divide at least one in
teger -5:,N. Then 

N 1 /c 1 1 
L - -5:. D 1+ + + ... 

pj n•1 n •1 PJ 

/c 1 
1-=TT 

J•1 PJ 

/c 2 
-5:. exp L - . 

J•• PJ 

The last inequality holds because 

if O -5:, X -5:, t, 

-1 

(There are many proofs of this result. See, for instance, the article by 
I. Niven in Amer. Math. Monthly, vol. 78, 1971, pp. 272-273, and the one by 
R. Bellman in Amer. Math. Monthly, vol. SO, 1943, pp. 318-319.) 

11. Suppose f e fJt on (0, A] for all A < oo, and/ (x) > 1 as x > + oo. Prove that 

00 

lim t e-•xf(x) dx = 1 (t > 0). 
t➔ O 0 

12. Suppose O < 8 < 1r, f(x) = 1 if Ix I -5:. 8, f(x) = 0 if 8 < Ix I -5:. 1r, and f(x + 21r) = 
/(x) for all x. 
(a) Compute the Fourier coefficients off. 
( b) Conclude that 

f sin (n8) = 1r - 8 
n•1 n 2 

(c) Deduce from Parseval's theorem that 

(0 <8 <1r). 

00 sin2 (n8) '" - 8 L __.;.~=-. 

(d) Let 8 > 0 and prove that 

n•1 n28 2 

00 sin x 

0 X 

2 7T 

dx=-. 
2 

(e) Put 8 = 1r/2 in (c). What do you get? 
13. Put /(x) = x if O -s;;, x < 21r, and apply Parseval's theorem to conclude that 

00 1 7r2 
L -=-. 
n•1 n2 6 
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14. If /(x) = {1r - Ix I )2 on [-1r, 1r], prove that 

11"2 00 4 
f(x) = 

3 
+ L 2 cos nx 

n•1 n 

and deduce that 

(A recent article by E. L. Stark contains many references to series of the form 
L n-', wheres is a positive integer. See Math. Mag., vol. 47, 1974, pp. 197-202.) 

15. With Dn as defined in (77), put 

Prove that 

and that 
(a) KN ~o, 

1 N 

KN(X) = N l L Dn(x). + n•O 

1 1 - cos (N + l)x 
KN(x) = N + 1 . 1 -cosx 

1 2 
(c) KN(x) ~ N + 1 · 1 - cos 8 

If sN = sN(f; x) is the Nth partial sum of the Fourier series off, consider 
the arithmetic means 

• 

Prove that 

1 ff 

aN(f; x) = 
2

11" -ff f(x - t)KN(t) dt, 

and hence prove Fejer's theorem: 
If fis continuous, with period 21r, then aN(f; x) > f(x) uniformly on [-1r, 1r]. 

Hint: Use properties (a), (b), (c) to proceed as in Theorem 7.26. 
16. Prove a pointwise version of Fejer's theorem: 

If I e 9t and f(x + ), f(x - ) exist for some x, then 

lim aN(f; x) = ½[f(x +) + /(x-)]. 
N➔ oo 
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17. Assume f is bounded and monotonic on [-'TT', 'TT'), with Fourier coefficients Cn, as 
given by (62). 
{a) Use Exercise 17 of Chap. 6 to prove that {ncn} is a bounded sequence. 
(b) Combine (a) with Exercise 16 and with Exercise 14(e) of Chap. 3, to conclude 

that 

lim s11(f; x) = ½[f(x+) + f(x- )] 
N➔ «> 

for every x. 
( c) Assume only that f e al on [ - 71', 71'] and that / is monotonic in some segment 
(oc, f3)c [-'TT', 'TT']. Prove that the conclusion of (b) holds for every x e (oc, /3). 

(This is an application of the localization theorem.) 
18. Define 

f(x) = x 3 
- sin2 x tan x 

g(x) = 2x2 - sin2 x - x tan x. 

Find out, for each of these two functions, whether it is positive or negative for all 
x e (0, 71'/2), or whether it changes sign. Prove your answer. 

19. Suppose f is a continuous function on R1
, f(x + 271') = /(x), and oc/71' is irrational. 

Prove that 

1 N 1 ff 

!~ N "~
1 
f(x + noc) = 271' -ff /(t) dt 

for every x. Hint: Do it first for /(x) = e'"x. 
20. The following simple computation yields a good approximation to Stirling's 

formula. 
For m = 1, 2, 3, ... , define 

f(x) = (m + 1 - x) log m + (x - m) log ( m + 1) 

if m ~ x ~ m + 1, and define 

X 
g(x) = - - 1 + log m 

m 

if m- ½ ~x < m + ½. Draw the graphs of /and g. Note that/(x) ~ log x ~g(x) 

if x ~ 1 and that 

n n 

f(x) dx = log (n!)- ½ log n > -i + g(x) dx. 
1 1 

Integrate log x over (1, n]. Conclude that 

t < log (n !) - (n + ½) log n + n < 1 

for n = 2, 3, 4, .... (Note: log V271' ~ 0.918 .... ) Thus 

,,a n ! 
e < (n/e)"v n < e. 
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21. Let 

1 
Ln = I Dn(t}I dt 

2'7T -n 
(n = 1, 2, 3, ... ). 

Prove that there exists a constant C > 0 such that 

Ln > Clogn 

or, more precisely, that the sequence 

(n = 1, 2, 3, ... ), 

is bounded. 

4 
Ln - 2 log n 

'7T 

22. If rx is real and -1 < x < 1, prove Newton's binomial theorem 

00 rx( rx - 1 ) · · · ( rx - n + 1) (1 + x) 11 = 1 + L ......;..._..;__~ __ _;_ x". 
n=- 1 n! 

Hint: Denote the right side by /(x). Prove that the series converges. Prove that 

(1 + x)/'(x) = rxf(x) 

and solve this differential equation. 
Show also that 

if -1 < x < 1 and rx > 0. 

(1 - x)- 11 = f: I'(n + rx) x" 
n•O n! I'(rx) 

23. Let y be a continuously differentiable closed curve in the complex plane, with 
parameter interval [a, b], and assume that y(t) # 0 for every t e [a, b]. Define the 

index of y to be 

1 
Ind (y) = 

2 
. 

'7Tl 

Prove that Ind (y) is always an integer. 

b y'(f) 
( ) 

dt. 
11 'Y t 

Hint: There exists rp on [a, b] with rp' = y'/y, rp(a) = 0. Hence y exp(-rp) 
is constant. Since y(a) = y(b) it follows that exp rp(b) = exp rp(a) = 1. Note that 
rp(b) = 2'7Ti Ind (y). 

Compute Ind (y) when y(t) = e1"t, a= 0, b = 2'7T. 
Explain why Ind (y) is often called the winding number of y around 0. 

24. Let y be as in Exercise 23, and assume in addition that the range of y does not 
intersect the negative real axis. Prove that Ind (y) = 0. Hint: For O :5: c < oo, 
Ind (y + c) is a continuous integer-valued function of c. Also, Ind (y + c) > 0 
asc >OO. 
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25. Suppose Y1 and Y2 are curves as in Exercise 23, and 

I Y1(t) - Y2(t) I < I Y1(t) I (as, ts, b). 

Prove that Ind (y1) = Ind (y2), 

Hint: Put y = y2IY1, Then I I - YI < 1, hence Ind (y) = 0, by Exercise 24. 
Also, 

y' I 
Y2 -- - • 

Y Y2 Y1 

26. Let y be a closed curve in the complex plane (not necessarily differentiable) with 
parameter interval [O, 21r], such that y(t) # 0 for every t e [O, 21r]. 

Choose 8 > 0 so that I y(t) I > 8 for all t e [O, 21r]. If P1 and P2 are trigo
nometric polynomials such that IP1(t) - y(t) I < 8/4 for all t e [O, 21r] (their exis
tence is assured by Theorem 8.15), prove that 

Ind (P1) = Ind (P2) 

by applying Exercise 25. 
Define this common value to be Ind (y). 
Prove that the statements of Exercises 24 and 25 hold without any differenti

ability assumption. 
• 

27. Let f be a continuous complex function defined in the complex plane. Suppose 
there is a positive integer n and a complex number c # 0 such that 

lim z-nJ(z) = c. 
,., ➔ 00 

Prove that f(z) = 0 for at least one complex number z. 
Note that this is a generalization of Theorem 8.8. 
Hint: Assume f(z) # 0 for all z, define 

y,(t) = f(rett) 

for Os, r < oo, 0 s, ts, 21r, and prove the following statements about the curves 
y,: 
(a) Ind (yo)= 0. 
(b) Ind (y,) = n for all sufficiently large r. 
(c) Ind (y,) is a continuous function of r, on [O, oo ). 
[In (b) and (c), use the last part of Exercise 26.] 

Show that (a), (b), and (c) are contradictory, since n > 0. 
28. Let D be the closed unit disc in the complex plane. (Thus z e D if and only if 

I z I s, 1.) Let g be a continuous mapping of D into the unit circle T. (Thus, 
lu(z)I = 1 for every z e D.) 

Prove that g(z) = - z for at least one z e T. 
Hint: For Os, rs, 1, 0 s, ts, 21r, put 

y,(t) = g(re11
), 

and put ip(t) = e- 11y 1(t). If g(z) # -z for every z e T, then ip(t) # -1 for every 
t e [O, 21r ]. Hence Ind (ip) = 0, by Exercises 24 and 26. It follows that Ind (y1) = 1. 
But Ind (yo)= 0. Derive a contradiction, as in Exercise 27. 
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29. Prove that every continuous mapping f of D into D has a fixed point in D. 
(This is the 2-dimensional case of Brouwer's fixed-point theorem.) 
Hint: Assume /(z) # z for every z e D. Associate to each z e D the point 

g(z) e T which lies on the ray that starts at /(z) and passes through z. Then g 
maps D into T, g(z) = z if z e T, and g is continuous, because 

g(z) = z - s(z)[f(z) - z], 

where s(z) is the unique nonnegative root of a certain quadratic equation whose 
coefficients are continuous functions off and z. Apply Exercise 28. 

30. Use Stirling's formula to prove that 

for every real constant c. 

lim I'(x + c) = 1 
,¥ ➔ 00 xcI'(x) 

31. In the proof of Theorem 7 .26 it was shown that 

1 4 
(1 - x2 )n dx ~ _ 

-1 3v'n 

for n = 1, 2, 3, .... Use Theorem 8.20 and Exercise 30 to show the more precise 
result 

1 

lim v' n 
n➔ CIC -1 



FUNCTIONS OF SEVERAL VARIABLES 

LINEAR TRANSFORMATIONS 

We begin this chapter with a discussion of sets of vectors in euclidean n-space Rn. 
The algebraic facts presented here extend without change to finite-dimensional 
vector spaces over any field of scalars. However, for our purposes it is quite 
sufficient to stay within the familiar framework provided by the euclidean spaces. 

9.1 Definitions 

(a) A nonempty set X c Rn is a vector space if x +ye X and ex e X 
for all x e X, y e X, and for all scalars c. 
(b) If x 1, ••. , xk E Rn and c1, ••. , ck are scalars, the vector 

is called a linear combination of x1, •.. , xk . If S c Rn and if E is the set 
of all linear combinations of elements of S, we say that S spans E, or that 
E is the span of S. 

Observe that every span is a vector space. 
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(c) A set consisting of vectors x 1, ... , xk (we shall use the notation 
{x1, .•. , xk} for such a set) is said to be independent if the relation 
c1x1 + · · · + ckxk = 0 implies that c1 = · · · = ck = 0. Otherwise {x1, ... , xk} 
is said to be dependent. 

Observe that no independent set contains the null vector. 
(d) If a vector space X contains an independent set of r vectors but con
tains no independent set of r + 1 vectors, we say that X has dimension r, 
and write: dim X = r. 

The set consisting of O alone is a vector space; its dimension is 0. 
(e) An independent subset of a vector space X which spans Xis called 
a basis of X. 

Observe that if B = {x1, ... , x,} is a basis of X, then every x e X 
has a unique representation of the form x = r.cixi. Such a representation 
exists since B spans X, and it is unique since B is independent. The 
numbers c1, ... , c, are called the coordinates of x with respect to the 
basis B. 

The most familiar example of a basis is the set {e1, ... , en}, where 
ei is the vector in Rn whosejth coordinate is 1 and whose other coordinates 
are all 0. If x e R11

, x = (x1 , ••• , xn), then x = r.xiei. We shall call 

{e1, ... ' en} 

the standard basis of Rn. 

9.2 Theorem Let r be a positive integer. If a vector space X is spanned by a 
set of r vectors, then dim X ~ r. 

Proof If this is false, there is a vector space X which contains an inde
pendent set Q = {y 1, ••. , Yr+ 1} and which is spanned by a set S0 consisting 
of r vectors. 

Suppose O ~ i < r, and suppose a set Si has been constructed which 
spans X and which consists of all y i with 1 ~ j ~ i plus a certain collection 
of r - i members of S0 , say x 1, ... , x,_ i. (In other words, Si is obtained 
from S0 by replacing i of its elements by members of Q, without altering 
the span.) Since Si spans X, Yi+l is in the span of Si; hence there are 
scalars a1, ... , ai+ 1, b1, ... , b,-i, with ai+ 1 = 1, such that 

i+l r-i 

L a i y i + L bk xk = 0. 
j=l k=l 

If all bk's were 0, the independence of Q would force all ai's to be 0, a 
contradiction. It follows that some xk e Si is a linear combination of the 
other members of Ti =Siu {Yi+ 1}. Remove this xk from Ti and call the 
remaining set Si+ 1. Then Si+ 1 spans the same set as Ti, namely X, so 
that Si+ 1 has the properties postulated for Si with i + I in place of i. 
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Starting with S0 , we thus construct sets S1 , ••• , S,. The last of 
these consists of y 1, ••• , y,, and our construction shows that it spans X. 
But Q is independent; hence y, + 1 is not in the span of S,. This contra
diction establishes the theorem. 

Corollary dim Rn = n. 

Proof Since {e1, ... , en} spans Rn, the theorem shows that dim Rn:$; n. 
Since { e1, ... , en} is independent, dim Rn ~ n. 

9.3 Theorem Suppose Xis a vector space, and dim X = n. 

(a) A set E of n vectors in X spans X if and only if Eis independent. 
(b) X has a basis, and every basis consists of n vectors. 
(c) If I~ r ~ n and {y1, ••• , y,} is an independent set in X, then X has a 

basis containing {y 1, ... , y,}. 

Proof Suppose E = {x1, ... , Xn}. Since dim X = n, the set {x1, ... , xn, y} 
is dependent, for every y e X. If E is independent, it follows that y is in 
the span of E; hence E spans X. Conversely, if Eis dependent, one of its 
members can be removed without changing the span of E. Hence E 
cannot span X, by Theorem 9.2. This proves (a). 

Since dim X = n, X contains an independent set of n vectors, and 
(a) shows that every such set is a basis of X; (b) now follows from 9. l(d) 
and 9.2. 

To prove (c), let {x1, ... , xn} be a basis of X. The set 

S = {y 1, · • • , Yr, X1, • • • , Xn} 

spans X and is dependent, since it contains more than n vectors. The 
argument used in the proof of Theorem 9.2 shows that one of the xi's is 
a linear combination of the other members of S. If we remove this xi from 
S, the remaining set still spans X. This process can be repeated r times 
and leads to a basis of X which contains {y1, ... , y,}, by (a). 

9.4 Definitions A mapping A of a vector space X into a vector space Y is said 
to be a linear transformation if 

A(cx) = cAx 

for all x, x 1, x2 e X and all scalars c. Note that one often writes Ax instead 
of A(x) if A is linear. 

Observe that AO = 0 if A is linear. Observe also that a linear transforma
tion A of X into Y is completely determined by its action on any basis: If 
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{x1, ... , xn} is a basis of X, then every x e X has a unique representation of the 
form 

n 

X = ~ C·X· ~ ' ,, 
i= 1 

and the linearity of A allows us to compute Ax from the vectors Ax1, .•• , Axn 
and the coordinates c1, •.. , en by the formula 

n 

Ax= L ci Axi. 
i= 1 

Linear transformations of X into X are often called linear operators on X. 
If A is a linear operator on X which (i) is one-to-one and (ii) maps X onto 
X, we say that A is invertible. In this case we can define an operator A- 1 on X 
by requiring that A- 1(Ax) = x for all x e X. It is trivial to verify that we then 
also have A(A- 1x) = x, for all x e X, and that A- 1 is linear. 

An important fact about linear operators on finite-dimensional vector 
spaces is that each of the above conditions (i) and (ii) implies the other: 

9.5 Theorem A linear operator A on a finite-dimensional vector space X is 
one-to-one if and only if the range of A is all of X. 

Proof Let {x1, ... , xn} be a basis of X. The linearity of A shows that 
its range Bf(A) is the span of the set Q = {Ax1 , ••• , Axn}. We therefore 
infer from Theorem 9.3(a) that Bf(A) = X if and only if Q is independent. 
We have to prove that this happens if and only if A is one-to-one. 

Suppose A is one-to-one and r.ci Axi = 0. Then A(l:.cixi) = 0, hence 
r.cixi = 0, hence c1 = · · · = en = 0, and we conclude that Q is independent. 

Conversely, suppose Q is independent and A(l:.cixi) = 0. Then 
r.c i Axi = 0, hence c 1 = · · · = en = 0, and we conclude: Ax = 0 only if 
x = 0. If now Ax = Ay, then A(x - y) = Ax - Ay = 0, so that x - y = 0, 
and this says that A is one-to-one. 

9.6 Definitions 

(a) Let L(X, Y) be the set of all linear transformations of the vector space 
X into the vector space Y. Instead of L(X, X), we shall simply write L(X). 
If A 1, A 2 e L(X, Y) and if c1, c2 are scalars, define c1A 1 + c2 A 2 by 

(c1A1 + c2 A2)x = c1A1x + c2 A2x (x e X). 

It is then clear that c1A 1 + c2 A 2 e L(X, Y). 
(b) If X, Y, Z are vector spaces, and if A e L(X, Y) and Be L(Y, Z), we 
define their product BA to be the composition of A and B: 

(BA)x = B(Ax) (x e X). 

Then BA e L( X, Z). 
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Note that BA need not be the same as AB, even if X = Y = Z. 
(c) For A e L(Rn, Rm), define the norm IIAII of A to be the sup of all 
numbers I Ax I, where x ranges over all vectors in Rn with Ix I :$; 1. 

Observe that the inequality 

I Ax I :$; I A I I x I 
holds for all x e Rn. Also, if 2 is such that I Ax I ::;; 2 Ix I for all x e Rn, 
then IIAII :$; l. 

9.7 Theorem 

(a) If A E L(Rn, Rm), then IIA II < oo and A is a uniformly continuous 
mapping of Rn into Rm. 

(b) If A, Be L(Rn, Rm) and c is a scalar, then 

IIA + Bl ::;; IIA I + !Bl , I cA I = I c I I A I . 
With the distance between A and B defined as IIA - Bl, L(Rn, Rm) is a 
metric space. 

(c) If A E L(Rn, Rm) and BE L(Rm, Rk), then 

I BA I ::;; I B I II A II. 
Proof 

(a) Let {e1, ... , en} be the standard basis in Rn and suppose x = l:ciei, 
!xi::;; 1, so that I cil :$; 1 for i = 1, ... , n. Then 

IAxl = LciAei :s;I lcil IAeil :$;L IAeil 
so that 

n 

II A II :$; L I Aei I < oo. 
i= 1 

Since I Ax - Ay I ::;; II A I Ix - y I if x, y e Rn, we see that A is uniformly 
• continuous. 

(b) The inequality in (b) follows from 

l(A + B)xl = !Ax+ Bx!::;; IAxl +!Bx!:$; (I All+ I Bl) Ix!. 

The second part of (b) is proved in the same manner. If 

A, B, CE L(Rn, Rm), 

we have the triangle inequality 

!IA - CII = ll(A - B) + (B - C)ll :$; IIA - BIi + IIB - CII, 
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and it is easily verified that II A - BIi has the other properties of a metric 
(Definition 2.15). 
(c) Finally, (c) follows from 

l(BA)x/ = IB(Ax)/ ~ IIBII IAxl ~ [[BIi [[All /xi. 
Since we now have metrics in the spaces L(Rn, Rm), the concepts of open 

set, continuity, etc., make sense for these spaces. Our next theorem utilizes 
these concepts. 

9.8 Theorem Let Q be the set of all invertible linear operators on Rn. 

(a) If A e Q, Be L(Rn), and 

(1) 

(2) 

II B - A II · II A - 1 II < 1, 

then BE n. 
(b) n is an open subset of L(Rn), and the mapping A ➔ A- 1 is continuous 

on n. 
(This mapping is also obviously a 1 - 1 mapping of n onto n, 

which is its own inverse.) 

Proof 

(a) Put IIA- 1
11 =1/a, put IB-AII =/3. Then/J<a. For every xeRn, 

a Ix I = a I A - l Ax I ~ a II A - 1
11 • I Ax I 

= I Ax I ~ I (A - B)x I + I Bx I ~ /31 x I + I Bx I, 

so that 

( a - /3) I x I ~ I Bx I 

Since a - f3 > 0, (I) shows that Bx-# 0 if x #- 0. Hence Bis 1 - 1. 
By Theorem 9.5, Ben. This holds for all B with IIB-- All< a. Thus 

-
we have (a) and the fact that n is open. 
(b) Next, replace x by B- 1y in (1). The resulting inequality 

(a - /J)IB- 1yj ~ IBB- 1yl = IYI 
shows that IIB- 1

11 ~ (a - /3)- 1
• The identity 

B- 1 -A- 1 = B- 1(A - B)A- 1, 

combined with Theorem 9.7(c), implies therefore that 

IIB-l -A- 1
11 ~ IIB- 1

11 IIA - Bii llA- 1 I~ /3 
rx(rx - {J) 

• 

This establishes the continuity assertion made in (b), since f3 ➔ 0 as B ➔ A. 
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9.9 Matrices Suppose {x1, •.• , xn} and {y1, ••• , Ym} are bases of vector spaces 
X and Y, respectively. Then every A e L(X, Y) determines a set of numbers 
a,1 such that 

m 

(3) Ax1 = L a11 y, 
i= 1 

(1 -5.j -5. n). 

It is convenient to visualize these numbers in a rectangular array of m rows 
and n columns, called an m by n matrix: 

[A]= 

011 012 • • • 01n 

a21 022 ''' a2n 
I • I I I I I I I I I I I I I I I I I 

Observe that the coordinates a,1 of the vector Ax1 (with respect to the basis 
{y1 , ... , Ym}) appear in the jth column of [A]. The vectors Axi are therefore 
sometimes called the column vectors of [A]. With this terminology, the range 
of A is spanned by the column vectors of [A]. 

(4) 

Ifx =Ic1x1 , the linearity of A, combined with (3), shows tl1at 

m 

Ax=I 
i= 1 

n 

LaiJci Yi• 
J= 1 

Thus the coordinates of Ax are r.1 a11 c1 • Note that in (3) the summation 
ranges over the first subscript of a11 , but that we sum over the second subscript 
when computing coordinates. 

Suppose next that an m by n matrix is given, with real entries aii . If A is 
then defined by (4), it is clear that A e L(X, Y) and that [A] is the given matrix. 
Thus there is a natural 1-1 correspondence between L(X, Y) and the set of all 
real m by n matrices. We emphasize, though, that [A] depends not only on A 
but also on the choice of bases in X and Y. The same A may give rise to many 
different matrices if we change bases, and vice versa. We shall not pursue this 
observation any further, since we shall usually work with fixed bases. (Some 
remarks on this may be found in Sec. 9.37.) 

If Z is a third vector space, with basis {z 1, ... , zp}, if A is given by (3), 
and if 

then A e L(X, Y), Be L(Y, Z), BA e L(X, Z), and since 

B(Ax1) =BL a,1y1 = L a,1By, 
i i 
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the independence of {z1, •.. , zp} implies that 

(5) (1 S k Sp, 1 Sj Sn). 

This shows how to compute the p by n matrix [BA] from [B] and [A]. If we 
define the product [B][A] to be [BA], then (5) describes the usual rule of matrix 
multiplication. 

Finally, suppose {x1, ••• , xn} and {y1, .•• , Ym} are standard bases of Rn and 
Rm, and A is given by (4). The Schwarz inequality shows that 

IAxl 2 = L L aiJcJ 
2 SL L afi · L c; = L a51xl 2

, 
i j i j j i, j 

Thus 

(6) 

If we apply (6) to B - A in place of A, where A, Be L(Rn, Rm), we see 
that if the matrix elements ail are continuous functions of a parameter, then the 
same is true of A. More precisely: 

If Sis a metric space, if a11 , ••. , amn are real continuous functions on S, 
and if, for each p e S, AP is the linear transformation of Rn into Rm whose matrix 
has entries ai1(p), then the mapping p ➔ AP is a continuous mapping of S into 
L(Rn, Rm). 

DIFFERENTIATION 

9.10 Preliminaries In order to arrive at a definition of the derivative of a 
function whose domain is Rn ( or an open subset of Rn), let us take another look 
at the familiar case n = 1, and let us see how to interpret the derivative in that 
case in a way which will naturally extend to n > 1. 

If f is a real function with domain (a, b) c R1 and if x e (a, b), then f'(x) 
is usually defined to be the real number 

(7) 1
. f(x + h) - f(x) 
1m h , 

h➔O 

provided, of course, that this limit exists. Thus 

(8) f(x + h) - f(x) = f'(x)h + r(h) 

where the ''remainder'' r(h) is small, in the sense that 

(9) 1· r(h)_o 
1m h - . 

h ➔ O 
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Note that (8) expresses the difference f(x + h) - f(x) as the sum of the 
linear function that takes h to f'(x)h, plus a small remainder. 

We can therefore regard the derivative of/ at x, not as a real number, 
but as the linear operator on R1 that takes h to f'(x)h. 

[Observe that every real number ct gives rise to a linear operator on R1 ; 

the operator in question is simply multiplication by et. Conversely, every linear 
function that carries R1 to R1 is multiplication by some real number. It is this 
natural 1-1 correspondence between R 1 and L(R1

) which motivates the pre
ceding statements.] 

Let us next consider a function f that maps (a, b) c R 1 into Rm. In that 
case, f'(x) was defined to be that vector ye Rm (if there is one) for which 

(10) lim f(x + h) - f (x) _ y = O. 
h➔O h 

We can again rewrite this in the form 

(11) f(x + h) - f(x) = hy + r(h), 

where r(h)/h ➔ 0 as h ➔ 0. The main term on the right side of (11) is again a 
linear function of h. Every y e Rm induces a linear transformation of R 1 into 
Rm, by associating to each he R 1 the vector hy e Rm. This identification of Rm 
with L(R1

, Rm) allows us to regard f'(x) as a member of L(R1, Rm). 
Thus, iff is a differentiable mapping of (a, b) c R 1 into Rm, and if x e (a, b), 

then f'(x) is the linear transformation of R 1 into Rm that satisfies 

(12) 

or, equivalently, 

(13) 

1
. f (x + h) - f (x) - f'(x)h _ 

0 1m h - , 
h➔O 

1
. lf(x + h) - f(x) - f'(x)hl _ 

0 
h~ lhl - . 

We are now ready for the case n > 1. 

9.11 Definition Suppose Eis an open set in Rn, f maps E into Rm, and x e E. 
If there exists a linear transformation A of Rn into Rm such that 

(14) 1
. lf(x+h)-f(x)-Ahl _

0 
h
1
:::, I h I - ' 

then we say that f is differentiable at x, and we write 

(15) f'(x) = A. 

If f is differentiable at every x e E, we say that f is differentiable in E. 
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It is of course understood in (14) that he Rn. If I h I is small enough, then 
x +he E, since Eis open. Thus f(x + h) is defined, f (x + h) e Rm, and since 
A e L(Rn, Rm), Ah e Rm. Thus 

f (x + h) - f (x) - Ah e Rm. 

The norm in the numerator of (14) is that of Rm. In the denominator we have 
the Rn-norm of h. 

There is an obvious uniqueness problem which has to be settled before 
we go any further. 

9.12 Theorem Suppose E and fare as in Definition 9.11, x e E, and (14) holds 
with A =Ai and with A =A 2 • Then Ai =A 2 • 

(16) 

Proof If B = A 1 - A 2 , the inequality 

IBhl ~ lf(x + h) - f(x) - A 1hl + lf(x + h) - f(x) -A 2 hl 

shows that I Bh I/ I h I ➔ 0 as h > 0. For fixed h #: 0, it follows that 

I B(th) 
I th I -+> 0 as t > 0. 

The linearity of B shows that the left side of (16) is independent of t. 
Thus Bh = 0 for every he Rn. Hence B = 0. 

9.13 Remarks 

(17) 

(18) 

(a) The relation (14) can be rewritten in the form 

f(x + h) - f(x) = f'(x)h + r(h) 

where the remainder r(h) satisfies 

lim I r(h) I = 0. 
b ➔ O I h I 

We may interpret (17), as in Sec. 9.10, by saying that for fixed x and small 
h, the left side of (17) is approximately equal to f'(x)h, that is, to the value 
of a linear transformation applied to h. 
(b) Suppose f and E are as in Definition 9.11, and f is differentiable in E. 
For every x e E, f'(x) is then a function, namely, a linear transformation 
of Rn into Rm. But f' is also a function: f' maps E into L(Rn, Rm). 
(c) A glance at (17) shows that f is continuous at any point at which f is 
differentiable. 
(d) The derivative defined by (14) or (17) is often called the differential 
off at x, or the total derivative off at x, to distinguish it from the partial 
derivatives that will occur later. 
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9.14 Example We have defined derivatives of functions carrying Rn to Rm to 
be linear transformations of Rn into Rm. What is the derivative of such a linear 
transformation? The answer is very simple. 

If A e L(Rn, Rm) and ifx e Rn, then 

(19) A'(x) = A. 

Note that x appears on the left side of (19), but not on the right. Both 
sides of (19) are members of L(Rn, Rm), whereas Axe Rm. 

The proof of (19) is a triviality, since 

(20) A(x + h) - Ax = Ah, 

by the linearity of A. With f(x) = Ax, the numerator in (14) is thus O for every 
he Rn. In (17), r(h) = 0. 

We now extend the chain rule (Theorem 5.5) to the present situation. 

9.15 Theorem Suppose Eis an open set in Rn, f maps E into Rm, f is differentiable 
at x0 e E, g maps an open set containing f(E) into Rk, and g is differentiable at 
f(x0). Then the mapping F of E into Rk defined by 

F(x) = g(f (x)) 
is differentiable at x0 , and 

(21) F'(x0 ) = g'(f (x0))f'(x0). 

On the right side of (21), we have the product of two linear transforma
tions, as defined in Sec. 9.6. 

(22) 

(23) 

Proof Put Yo = f (x0), A = f '(x0), B = g'(y0), and define 

u(h) = f (x0 + h) - f(x0) - Ah, 

v(k) = g(y0 + k) - g(y0) - Bk, 

for all he Rn and k e Rm for which f(x0 + h) and g(y0 + k) are defined. 
Then 

I u(h) I = e(h) I h I, lv(k)I = 17(k)lkl, 

where e(h) ➔ 0 as h • 0 and 17(k) • 0 as k • 0. 
Given h, put k = f(x0 + h) - f(x0). Then 

I k I = I Ah + u(h) I ~ [ 11 A 11 + e(h)] I h I, 
and 

F(x0 + h) - F(x0) - BAh = g(y O + k) - g(y 0) - BAh 

= B(k - Ah) + v(k) 

= Bu(h) + v(k). 
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Let h ➔ 0. Then e(h) ➔ 0. Also, k ➔ 0, by (23), so that 17(k) ➔ 0. 
It fc>llows that F'(x0) = BA, which is what (21) asserts. 

9.16 Partial derivatives We again consider a function f that maps an open 
set E c Rn into Rm. Let {e1, ... , en} and {u1, ... , um} be the standard bases of 
Rn and Rm. The components off are the real functions / 1, ••• , fm defined by 

m 

(24) f(x) = L .fi(x)u1 (x E £), 
i= 1 

or, equivalently, by fi(x) = f (x) · u1, 1 s; is; m. 
For x e E, 1 s; is; m, 1 S:j s; n, we define 

(25) (D1.fi)(x) = lim .fi(x + te1) - .fi(x)' 
t ➔ O t 

provided the limit exists. Writing .fi(x1 , ••• , xn) in place of fi(x), we see that 
D 1.fi is the derivative of Ji with respect to x 1, keeping the other variables fixed. 
The notation 

(26) 
o.fi 

OX1 

is therefore often used in place of D 1./i, and D 1./i is called a partial derivative. 
In many cases where the existence of a derivative is sufficient when dealing 

with functions of one variable, continuity or at least boundedness of the partial 
derivatives is needed for functions of several variables. For example, the 
functions/ and g described in Exercise 7, Chap. 4, are not continuous, although 
their partial derivatives exist at every point of R2

• Even for continuous functions. 
the existence of all partial derivatives does not imply differentiability in the sense 
of Definition 9 .11 ; see Exercises 6 and 14, and Theorem 9 .21. 

However, if f is known to be differentiable at a point x, then its partial 
derivatives exist at x, and they determine the linear transformation f'(x) 
completely: 

9.17 Theorem Suppose f maps an open set E c Rn into Rm, andf is differentiable 
at a point x e E. Then the partial derivatives (D1.fi)(x) exist, and 

m 

(27) f'(x)e1 = L (D1ft)(x)u1 
i= 1 

(1 s;js;n). 
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Here, as in Sec. 9.16, {e1, ... , en} and {u1, ••• , um} are the standard bases 
of Rn and Rm. 

(28) 

(29) 

Proof Fix j. Since f is differentiable at x, 

f (x + te1) - f (x) = f'(x)(te1) + r(te1) 

where I r(te1) l/t ➔ 0 as t ➔ 0. The linearity off '(x) shows therefore that 

1. f (x + te1) - f (x) f '( ) 1m --~--- = x e1 . 
t ➔ O t 

If we now represent f in terms of its components, as in (24), then (28) 
becomes 

1. ~ ft(x + te1) - ft(x) f '( ) 
1m '-' ui = x e1 . 
t ➔ O i= 1 t 

It follows that each quotient in this sum has a limit, as t , 0 (see Theorem 
4.10), so that each (D1/;)(x) exists, and then (27) follows from (29). 

Here are some consequences of Theorem 9 .17 : 
Let [f'(x)] be the matrix that represents f '(x) with respect to our standard 

bases, as in Sec. 9.9. 

Then f '(x)e1 is the jth column vector of [f'(x)], and (27) shows therefore 
that the number (D1/t)(x) occupies the spot in the ith row and jth column of 
[f'(x)]. Thus 

[f '(x)] = e e • • e e I e I I I e e e I I e e I I I ■ ■ I e I 

(D1fm)(x) · · · (Dnfm)(x) 

If h = '1:.h1e1 is any vector in Rn, then (27) implies that 
m n 

(30) f'(x)h = L L (D1ft)(x)h1 u1• 
I= 1 J= 1 

• 

9.18 Example Let y be a differentiable mapping of the segment (a, b) c R1 

into an open set E c Rn, in other words, y is a differentiable curve in E. Let I 
be a real-valued differentiable function with domain E. Thus/ is a differentiable 
mapping of E into R1

• Define 

(31) g(t) = f(y(t)) (a< t < b). 

The chain rule asserts then that 

(32) g'(t) = f'(y(t))y'(t) (a< t < b). 
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Since y'(t) e L(R1 , Rn) and f'(y(t)) e L(Rn, R1
), (32) defines g'(t) as a linear 

operator on R1• This agrees with the fact that g maps (a, b) into R1
• However, 

g'(t) can also be regarded as a real number. (This was discussed in Sec. 9.10.) 
This number can be computed in terms of the partial derivatives of/ and the 
derivatives of the components of y, as we shall now see. 

With respect to the standard basis {e1, ... , en} of Rn, [y'(t)] is the n by 1 
matrix (a ''column matrix'') which has y~ (t) in the ith row, where y1 , ••• , "In are 
the components of y. For every x e E, [/'(x)] is the 1 by n matrix(a ''row matrix'') 
which has (D1/)(x) in thejth column. Hence [g'(t)] is the 1 by 1 matrix whose 
only entry is the real number 

n 

(33) g'(t) = L (Dif)(y(t))y; (t). 
i= 1 

This is a frequently encountered special case of the chain rule. It can be 
rephrased in the following manner. 

Associate with each x e E a vector, the so-called ''grarlient'' off at x, 
defined by 

n 

(34) (V/)(x) = L (D1/)(x)e;. 
i= 1 

Since 
n 

(35) y'(t) = L 1, (t)e;, 
,= 1 

(33) can be written in the form 

(36) g'(t) = (Vf)(y(t)) · y'(t), 

the scalar product of the vectors (V/)(y(t)) and y'(t). 
Let us now fix an x e E, let u e Rn be a unit vector ( that is, I u I = 1 ), and 

specialize y so that 

(37) y(t) = X + tu ( - 00 < t < 00 ). 

Then y'(t) = u for every t. Hence (36) shows that 

(38) g'(O) = (V/)(x) · u. 

On the other hand, (37) shows that 

g(t) - g(O) = /(x + tu) - /(x). 

Hence (38) gives 

(39) lim /(x + tu) - /(x) = (V/) (x) · u. 
t ➔ O t 
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The limit in (39) is usually called the directional derivative off at x, in the 
direction of the unit vector u, and may be denoted by (Duf)(x). 

If f and x are fixed, but u varies, then (39) shows that (Duf)(x) attains its 
maximum when u is a positive scalar multiple of (Vf)(x). [The case (Vf)(x) = 0 
should be excluded here.] 

If u = l:.u1 e,, then (39) shows that (Duf)(x) can be expressed in terms of 
the partial derivatives off at x by the formula 

n 

(40) (Duf)(x) = L (Dif)(x)ui. 
i= 1 

Some of these ideas will play a role in the following theorem. 

9.19 Theorem Suppose f maps a convex open set E c Rn into Rm, f is differen
tiable in E, and there is a real number M such that 

llf '(x)II ~ M 

for every x e E. Then 

lf(b) - f(a)I ~ Mjb - al 

for all a e E, b e E. 

Proof Fix a e E, b e E. Define 

y(t) = (1 - t)a + tb 

for all t e R1 such that y(t) e E. Since Eis convex, y(t) e E if O ~ t ~ I. 
Put 

g(t) = f (y(t)). 

Then 

g'(t) = f '(y(t))y'(t) = f '(y(t))(b - a), 

so that 

lg'(t)I ~ llf'(y(t))ll lb - al~ Mlb - al 

for all t e [O, 1 ]. By Theorem 5.19, 

lg(l) - g(O)I ~ Mlb - al. 

But g(O) = f(a) and g(l) = f (b). This completes the proof. 

Corollary If, in addition, f'(x) = 0 for all x e E, then f is constant. 

Proof To prove this, note that the hypotheses of the theorem hold now 
with M =0. 
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9.20 Definition A differentiable mapping f of an open set E c Rn into Rm is 
said to be continuously differentiable in E if f' is a continuous mapping of E 
into L(Rn, Rm). 

More explicitly, it is required that to every x e E and to every e > 0 
corresponds a /j > 0 such that 

!If '(y) - r '(x)II < e 

if y e E and I x - Y I < l>. 
If this is so, we also say that f is a CC'-mapping, or that f e CC'(E). 

9.21 Theorem Suppose f maps an open set E c Rn into Rm. Then f e CC'(E) if 
and only if the partial derivatives D Jh exist and are continuous on E for 1 ~ i ~ m, 
1 ~j ~ n. 

(41) 

Proof Assume first that f e CC'(E). By (27), 

(DJft)(x) = (f'(x)eJ) · u, 

for all i, .i, and for all x e E. Hence 

(DJfi)(y) - (DJft)(x) = {[f'(y) - f'(x)]eJ} · u, 

and since I ui I = I e JI = I, it follows that 

I (DJft)(y) - (DJft)(x) I ~ I [f'(y) - f '(x)]eJ I 
~ llf'(y) - f'(x)II. 

Hence D Jh is continuous. 
For the converse, it suffices to consider the case m = 1. (Why?) 

Fix x e E and e > 0. Since E is open, there is an open ball S c E, with 
center at x and radius r, and the continuity of the functions DJf shows 
that r can be chosen so that 

B I (DJ/)(y) - (DJ/)(x) I < -
n 

(y ES, 1 ~j ~ n). 

Suppose h = I.hJeJ, lhl < r, put v0 = 0, and vk = h1e1 + · · · + hkek, 
for 1 ~ k ~ n . Then 

n 

(42) /(x + h) -/(x) = L [f(x + vJ) - /(x + VJ- 1)]. 
J= 1 

Since I vk I < r for 1 ~ k ~ n and since S is convex, the segments with end 
points x + vJ-l and x + vJ lie in S. Since VJ= vJ-l + hJeJ, the mean 
value theorem (5.10) shows that thejth summand in (42) is equal to 

hJ(DJf)(x + vJ-l + 0JhJeJ) 
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for some 01 e (0, 1), and this differs from h1(D1f)(x) by less than I h1 I e/n, 
using (41). By (42), it follows that 

for all h such that I h I < r. 
This says that f is differentiable at x and that f'(x) is the linear 

function which assigns the number '1:.h1(D1f)(x) to the vector h = '1:.h1e1 . 

The matrix [f'(x)] consists of the row (D1/)(x), ... , (Dnf)(x); and since 
D1f, ... , Dnf are continuous functions on E, the concluding remarks of 
Sec. 9.9 show that/ e fC'(E). 

THE CONTRACTION PRINCIPLE 

We now interrupt our discussion of differentiation to insert a fixed point 
theorem that is valid in arbitrary complete metric spaces. It will be used in the 
proof of the inverse function theorem. 

9.22 Definition Let X be a metric space, with metric d. If <p maps X into X 
and if there is a number c < 1 such that 

(43) d(<p(x), <p(y)) :$; c d(x, y) 

for all x, y e X, then <p is said to be a contraction of X into X. 

9.23 Theorem If X is a complete metric space, and if <p is a contraction of X 
into X, then there exists one and only one x e X such that <p(x) = x. 

In other words, <p has a unique fixed point. The uniqueness is a triviality, 
for if <p(x) = x and <p(y) = y, then (43) gives d(x, y) :$; c d(x, y), which can only 
happen when d(x, y) = 0. 

The existence of a fixed point of <p is the essential part of the theorem. 
The proof actually furnishes a constructive method for locating the fixed point. 

(44) 

(45) 

Proof Pick x0 e X arbitrarily, and define {xn} recursively, by setting 

(n = 0, 1, 2, ... ). 

Choose c < 1 so that (43) holds. For n ~ 1 we then have 

d(Xn+ 1, Xn) = d(<p(Xn), <p(Xn- 1)) ~ C d(xn, Xn- 1), 

Hence induction gives 

(n=0,1,2, ... ). 
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If n < m, it follows that 

m 

d(xn, Xm) ~ L d(xi, Xi-1) 
i=n+ 1 

~(en+ cn+l + ''' + cm-l) d(x1, Xo) 

~ [(1 - c)- 1 d(x1, x0 )]cn. 

Thus {xn} is a Cauchy sequence. Since Xis complete, lim Xn = x for some 
XE X. 

Since <p is a contraction, <p is continuous (in fact, uniformly con
tinuous) on X. Hence 

<p(x) = lim <p(Xn) = lim Xn+ 1 = X. 
n➔ oo n ➔ oo 

THE INVERSE FUNCTION THEOREM 

The inverse function theorem states, roughly speaking, that a continuously 
differentiable mapping f is invertible in a neighborhood of any point x at which 
the linear transformation f'(x) is invertible: 

9.24 Theorem Si,ppose f is a <fl'-mapping of an open set E c Rn into Rn, f'(a) 
is invertible for some a e E, and b = f(a). Then 

(a) there exist open sets U and Vin Rn such that a e U, be V, f is one-to
one on U, and f(U) = V; 

(b) if g is the inverse off [which exists, by (a)], defined in V by 

g(f(x)) = X (x e U), 

then g e <fl'(V). 

Writing the equation y = f(x) in component form, we arrive at the follow
ing interpretation of the conclusion of the theorem: The system of n equations 

(1 ~ i ~ n) 

can be solved for x 1, .•• , xn in terms of y1, ••• , Yn, if we restrict x and y to small 
enough neighborhoods of a and b; the solutions are unique and continuously 
differentiable. 

(46) 

Proof 

(a) Put f'(a) = A, and choose A so that 

2l11A- 1 11 = 1. 
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(47) 

Since f' is continuous at a, there is an open ball Uc E, with center at a, 
such that 

llf'(x) - A 11 < J. (x e U). 

We associate to each ye Rn a function q,, defined by 

(48) q,(x) = x + A- 1{y - f(x)) (x e E). 

(49) 

(50) 

Note that f(x) = y if and only if xis a.fixed point of q,. 
Since q,'(x) = / - A- 1f'(x) = A- 1(A - f'(x)), (46) and (47) imply 

that 

llq,'(x)I < ½ (x e U). 

Hence 

by Theorem 9.19. It follows that q, has at most one fixed point in U, so 
that f (x) = y for at most one x e U. 

Thus f is 1 - 1 in U. 

Next, put V = f(U), and pick Yoe V. Then Yo = f(x0) for some 
x0 e U. Let B be an open ball with center at x0 and radius r > 0, so small 
that its closure .B lies in U. We will show that ye Vwhenever I y - Yo I < J.r. 
This proves, of course, that V is open. 

Fix y, I y - Yo I < J.r. With q, as in (48), 

r 
lq,(xo) - Xol = IA- 1(Y-Yo)I < IIA- 1

1 J.r = 2-

If x e .B, it therefore follows from (50) that 

I q,(x) - Xo I :::; I q,(x) - q,(xo) I + I q,(xo) - Xo I 
• 

1 r 
< 2 I x - Xo I + 2 :::; r; 

hence q,(x) e B. Note that (50) holds if x 1 e B, x2 e B. 
Thus q, is a contraction of B into .B. Being a closed subset of Rn, 

B is complete. Theorem 9.23 implies therefore that q, has a fixed point 
x e B. For this x, f(x) = y. Thus ye f(B) c f(U) = V. 

This proves part (a) of the theorem. 

(b) Pick ye V, y + k e V. Then there exist x e U, x +he U, so that 
y = f (x), y + k = f (x + h). With q, as in (48), 

q,(x + h) - q,(x) = h + A- 1[f(x) - f(x + h)] = h - A- 1k. 

By (50), lb -A- 1kl:::; ½lhl. Hence IA- 1kl ~ ½lhl, and 

(51) !hi:::; 2IIA- 1 II lkl =2- 1 lkl, 
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By (46), (47), and Theorem 9.8, f'(x) has an inverse, say T. Since 

g(y + k) - g(y) - Tk = h - Tk = -T[f(x + h) - f(x) - f'(x)h], 

(51) implies 

lg(y + k) - g(y) - Tkl IIT I lf(x + h) - f(x) - f'(x)hl 
lkl ~ A . lhl . 

Ask ➔ 0, (51) shows that h ➔ 0. The right side of the last inequality 
thus tends to 0. Hence the same is true of the left. We have thus proved 
that g'(y) = T. But Twas chosen to be the inverse off'(x) = f'(g(y)). Thus 

(52) g'(y) = {f '(g(y))}- 1 (ye V). 

Finally, note that g is a continuous mapping of V onto U (since g 
is differentiable), that f' is a continuous mapping of U into the set n of 
all invertible elements of L(Rn), and that inversion is a continuous mapping 
of n onto n, by Theorem 9.8. If we combine these facts with (52), we see 
that g e <67'( V). 

This completes the proof. 

Remark. The full force of the assumption that f e <67'(E) was only used 
in the last paragraph of the preceding proof. Everything else, down to Eq. (52), 
was derived from the existence off '(x) for x e E, the invertibility of f'(a), and 
the continuity off' at just the point a. In this connection, we refer to the article 
by A. Nijenhuis in Amer. Math. Monthly, vol. 81, 1974, pp. 969-980. 

The following is an immediate consequence of part (a) of the inverse 
function theorem. 

9.25 Theorem /ff is a <67'-mapping of an open set E c Rn into Rn and if f'(x) 
is invertible for every x e E, then f ( W) is an open subset of Rn for every open set 
WcE. 

In other words, f is an open mapping of E into Rn. 

The hypotheses made in this theorem ensure that each point x e E has a 
neighborhood in which f is 1-1. This may be expressed by saying that f is 
locally one-to-one in E. But f need not be 1-1 in E under these circumstances. 
?or an example, see Exercise 17. 

THE IMPLICIT FUNCTION THEOREM 

If f is a continuously differentiable real function in the plane, then the equation 
f(x, y) = 0 can be solved for y in terms of x in a neighborhood of any point 
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(a, b) at whichf(a, b) = 0 and of/oy-:/: 0. Likewise, one can solve for x in terms 
of y near (a, b) if of/ox-:/: 0 at (a, b). For a simple example which illustrates 
the need for assuming of/oy-:/: 0, consider f(x, y) = x 2 + y 2 

- 1. 
The preceding very informal statement is the simplest case (the case 

m = n = 1 of Theorem 9.28) of the so-called ''implicit function theorem." Its 
proof makes strong use of the fact that continuously differentiable transformations 
behave locally very much like their derivatives. Accordingly, we first prove 
Theorem 9.27, the linear version of Theorem 9.28. 

9.26 Notation If x = (x1 , ... , Xn) e Rn and y = (y1 , .•. , Ym) e Rm, let us write 
(x, y) for the point ( or vector) 

In what follows, the first entry in (x, y) or in a similar symbol will always be a 
vector in Rn, the second will be a vector in Rm. 

Every A e L(Rn+m, Rn) can be split into two linear transformations Ax and 
Ay , defined by 

(53) Ax h = A(h, 0), 

for any he Rn, k e Rm. Then Axe L(Rn), Aye L(Rm, Rn), and 

(54) A(h, k) = Ax h + Ay k. 

The linear version of the implicit function theorem is now almost obvious. 

9.27 Theorem If A e L(Rn+m, Rn) and if Ax is invertible, then there corresponds 
to every k e Rm a unique h e Rn such that A(h, k) = 0. 

This h can be computed from k by the formula 

(55) h = -(Ax)- 1Ayk. 

Proof By (54), A(h, k) = 0 if and only if 

Axh + Ayk = 0, 

which is the same as (55) when Ax is invertible. 

The conclusion of Theorem 9.27 is, in other words, that the equation 
A(h, k) = 0 can be solved (uniquely) for h if k is given, and that the solution h 
is a linear function of k. Those who have some acquaintance with linear algebra 
will recognize this as a very familiar statement about systems of linear equations. 

9.28 Theorem Let f be a rc' -niapping of an open set E c Rn+m into Rn, such 
that f(a, b) = 0 for some point (a, b) e E. 

Put A = f'(a, b) and assume that Ax is invertible. 
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Then there exist open sets Uc Rn+m and W c Rm, with (a, b) e U and 
b e W, having the f of lowing property: 

(56) 

(57) 

and 

(58) 

To every y e W corresponds a unique x such that 

(x, y) EU and f (x, y) = 0. 

If this xis defined to be g(y), then g is a ~'-mapping of W into Rn, g(b) = a, 

f (g(y), y) = 0 (y E W), 

The function g is ''implicitly'' defined by (57). Hence the name of the 
theorem. 

The equation f(x, y) = 0 can be written as a system of n equations in 
n + m variables: 

(59) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

fn(x1, ... ' Xn, Y1, ... ' Ym) = 0. 

The assumption that Ax is invertible means that the n by n matrix 

D1f1 · · · D,,f1 
I I I I I • • I I I I I I I I I 

D f, ... 
1 n 

evaluated at (a, b) defines an invertible linear operator in Rn; in other words, 
its column vectors should be independent, or, equivalently, its determinant 
should be =FO, (See Theorem 9.36.) If, furthermore, (59) holds when x = a and 
y = b, then the conclusion of the theorem is that (59) can be solved for x1, .•• , xn 
in terms of y1, ... , Ym, for every y near b, and that these solutions are continu
ously differentiable functions of y. 

(60) 

Proof Define F by 

F(x, y) = (f(x, y), y) ((x, y) EE). 

Then F is a ~'-mapping of E into Rn+m. We claim that F'(a, b) is an 
invertible element of L(Rn+m): 

Since f (a, b) = 0, we have 

f (a + h, b + k) = A(h, k) + r(h, k), 

where r is the remainder that occurs in the definition of f'(a, b). Since 

F(a + h, b + k) - F(a, b) = (f (a+ h, b + k), k) 
= (A(h, k), k) + (r(h, k), 0) 
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(61) 

(62) 

it follows that F'(a, b) is the linear operator on Rn+m that maps (h, k) to 
(A(h, k), k). If this image vector is 0, then A(h, k) = 0 and k = 0, hence 
A(h, 0) = 0, and Theorem 9.27 implies that h = 0. It follows that F'(a, b) 
is 1-1; hence it is invertible (Theorem 9.5). 

The inverse function theorem can therefore be applied to F. It shows 
that there exist open sets U and Vin Rn+m, with (a, b) e U, (0, b) e V, such 
that F is a 1-1 mapping of U onto V. 

We let W be the set of all ye Rm such that (0, y) e V. Note that 
be W. 

It is clear that W is open since V is open. 
lfy e W, then (0, y) = F(x, y) for some (x, y) e U. By (60), f(x, y) = 0 

for this x. 
Suppose, with the same y, that (x', y) e U and f(x', y) = 0. Then 

F(x', y) = (f(x', y), y) = (f(x, y), y) = F(x, y). 

Since F is 1-1 in U, it follows that x' = x. 
This proves the first part of the theorem. 

For the second part, define g(y), for y e W, so that (g(y), y) e U and 
(57) holds. Then 

F(g(y), y) = (0, y) (y E W). 

If G is the mapping of V onto U that inverts F, then G e ~', by the inverse 
function theorem, and (61) gives 

(g(y), y) = G(O, y) (y E W). 

Since Ge~', (62) shows that g e ~'. 
Finally, to compute g'(b), put (g(y), y) = <l>(y). Then 

(63) <l>'(y)k = (g'(y)k, k) (ye W, k e Rm). 

(64) 

(65) 

By (57), f (<l>(y)) = 0 in W. The chain rule shows therefore that 

f '(<l>(y))<l>'(y) = 0. 

When y = b, then <l>(y) = (a, b), and f '(<l>(y)) = A. Thus 

A<l>'(b) = 0. 

It now follows from (64), (63), and (54), that 

Axg'(b)k + A,k = A(g'(b)k, k) = A<l>'(b)k = 0 

for every k e Rm. Thus 

Axg'(b) +A,= 0. 



FUNCTIONS OF SEVERAL VARIABLES 227 

This is equivalent to (58), and completes the proof. 

Note. In terms of the components off and g, (65) becomes 

n 

L (D1ft)(a, b)(DkgJ)(b) = -(Dn+kft)(a, b) 
J= 1 

or 

n 

I - --
J= 1 

where 1 ~ i ~ n, 1 ~ k ~ m. 
For each k, this is a system of n linear equations in which the derivatives 

ogi/oyk (1 ~j ~ n) are the unknowns. 

9.29 Example Take n = 2, m = 3, and consider the mapping f = (/1, / 2) of 
R 5 into R 2 given by 

f1(X1, X2, Y1, Y2, y3) = 2exi + X2 Y1 - 4y2 + 3 

f2(X1, X2' Y1, Y2' y3) = X2 cos X1 - 6x1 + 2y1 - YJ. 

If a = (0, 1) and b = (3, 2, 7), then f(a, b) = 0. 
With respect to the standard bases, the matrix of the transformation 

A = f '(a, b) is 

Hence 

[A]= 

2 
-6 

2 
-6 

3 
1 ' 

3 
1 

1 
2 

-4 
0 

1 
[A,]= 2 

0 
-1 . 

-4 
0 

0 
-1 . 

We see that the column vectors of [Ax] are independent. Hence Ax is invertible 
and the implicit function theorem asserts the existence of a rc' -mapping g, defined 
in a neighborhood of (3, 2, 7), such that g(3, 2, 7) = (0, 1) and f (g(y), y) = 0. 

We can use (58) to compute g'(3, 2, 7): Since 

(58) gives 

1 1 
[g'(3, 2, 7)] = - 20 6 

-3 1 
2 2 

-4 
0 

1 -3 
6 2 

0 
-1 

-- ¼ 
-½ 

t -~ 
t *. 
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In terms of partial derivatives, the conclusion is that 

D1U2 = -½ 
at the point (3, 2, 7). 

THE RANK THEOREM 

D2U1 = t 
D2U2 =f 

D g - - 3 3 1 - 20 

D3g2 = 1
1
0 

Although this theorem is not as important as the inverse function theorem or 
the implicit function theorem, we include it as another interesting illustration 
of the general principle that the local behavior of a continuously differentiable 
mapping F near a point x is similar to that of the linear transformation F'(x). 

Before stating it, we need a few more facts about linear transformations. 

9.30 Definitions Suppose X and Y are vector spaces, and A E L( X, Y), as in 
Definition 9.6. The null space of A, %(A), is the set of all x E X at which Ax = 0. 
It is clear that .;V(A) is a vector space in X. 

Likewise, the range of A, al(A), is a vector space in Y. 
The rank of A is defined to be the dimension of al(A). 
For example, the invertible elements of L(Rn) are precisely those whose 

rank is n. This follows from Theorem 9.5. 
If A E L(X, Y) and A has rank 0, then Ax = 0 for all x e A, hence.;V(A) = X. 

In this connection, see Exe1·cise 25. 

9.31 Projections Let X be a vector space. An operator PE L(X) is said to be 
a projection in X if P2 = P. 

More explicitly, the requirement is that P(Px) = Px for every x E X. In 
other words, P fixes every vector in its range al(P). 

Here are some elementary properties of projections: 

(a) If Pis a projection in X, then every x E X has a unique representation 
of the form 

where x 1 e al(P), x2 e .;V(P). 
To obtain the representation, put x1 = Px, x2 = x - x1• Then 

Px2 = Px - Px1 = Px - P2x = 0. As regards the uniqueness, apply P to 
the equation x = x 1 + x2 • Since x1 E al(P), Px1 = x1 ; since Px2 = 0, it 
follows that x1 = Px. 
(b) If Xis a.finite-dimensional vector space and if X1 is a vector space in 
X, then there is a projection Pin X with fJt(P) = X1 . 
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If X1 contains only 0, this is trivial: put Px = 0 for all x e X. 
Assume dim X 1 = k > 0. By Theorem 9.3, X has then a basis 

{u1, ... , un} such that {u1, ... , uk} is a basis of X1. Define 

P(c1U1 + ... + cnun) = C1U1 + •. • + ckuk 

for arbitrary scalars c1, •.. , cn. 
Then Px = x for every x e X 1 , and X 1 = 9l(P). 
Note that {uk+ 1, ... , un} is a basis of .;V(P). Note also that there are 

infinitely many projections in X, with range X1 , if O < dim X1 < dim X. 

9.32 Theorem Suppose m, n, r are nonnegative integers, m ~ r, n ~ r, F is a 
<C' -mapping of an open set E c Rn into Rm, and F'(x) has rank r for every x e E. 

Fix a e E, put A = F'(a), let Y1 be the range of A, and let P be a projection 
in Rm whose range is Y1. Let Y2 be the null space of P. 

Then there are open sets U and V in Rn, with a e U, U c E, and there is a 
1-1 <C' -mapping H of V onto U ( whose inverse is also of class <C') such that 

(66) F(H(x)) = Ax + q,(Ax) (x e V) 

where q, is a <C' -mapping of the open set A(V) c Y1 into Y2 • 

After the proof we shall give a more geometric description of the informa
tion that (66) contains. 

(67) 

(68) 

(69) 

Proof If r = 0, Theorem 9.19 shows that F(x) is constant in a neighbor
hood U of a, and (66) holds trivially, with V = U, H(x) = x, q,(O) = F(a). 

From now on we assume r > 0. Since dim Y1 = r, Y1 has a basis 
{y1, ... , Yr}. Choose zi e Rn so that Azi = Yi (1 ~ i ~ r), and define a linear 
mapping S of Y1 into Rn by setting 

S(cy +···+cy)=cz +···+cz 11 rr 11 rr 

for all scalars c1, .•. , cr. 
Then ASyi = Azi = Yi for I ~ i ~ r. Thus 

ASy =y 

Define a mapping G of E into Rn by setting 

G(x) = x + SP[F(x) - Ax] (x EE). 

Since F'(a) = A, differentiation of (69) shows that G'(a) = I, the identity 
operator on Rn. By the inverse function theorem, there are open sets U 
and V in Rn, with a e U, such that G is a 1-1 mapping of U onto V whose 
inverse His also of class~'. Moreover, by shrinking U and V, if necessary, 
we can arrange it so that Vis convex and H'(x) is invertible for every x e V. 
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(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

Note that ASPA = A, since PA = A and (68) holds. Therefore (69) 
• gives 

AG(x) = PF(x) (x e E). 

In particular, (70) holds for x e U. If we replace x by H(x), we obtain 

PF(H(x)) = Ax (x e V). 
Define 

1/J(x) = F(H(x)) - Ax (x e V). 

Since PA = A, (71) implies that PI/J(x) = 0 for all x e V. Thus 1/J is a 
fl' -mapping of V into Y2 • 

Since Vis open, it is clear that A(V) is an open subset of its range 
al(A) = Y1• 

To complete the proof, i.e., to go from (72) to (66), we have to show 
that there is a <67'-mapping q, of A(V) into Y2 which satisfies 

q,(Ax) = 1/J(x) (x e V). 

As a step toward (73), we will first prove that 

I/J(x1) = I/J(x2) 

if x1 e V, x2 e V, Ax1 = Ax2• 

Put <l>(x) = F(H(x)), for x e V. Since H'(x) has rank n for every 
x e V, and F'(x) has rank r for every x e U, it follows that 

rank <l>'(x) = rank F'(H(x))H'(x) = r (x e V). 

Fix x e V. Let M be the range of <l>'(x). Then Mc Rm, dim M = r. 
By (71), 

(76) P<l>'(x) = A. 

(77) 

(78) 

Thus P maps M onto al(A) = Y1 • Since M and Y1 have the same di
mension, it follows that P (restricted to M) is 1-1. 

Suppose now that Ah= 0. Then P<l>'(x)h = 0, by (76). But 
<l>'(x)h e M, and Pis 1-1 on M. Hence ct>'(x)h = 0. A look at (72) shows 
now that we have proved the following: 

If x e V and Ah = 0, then 1/J'(x)h = 0. 
We can now prove (74). Suppose x1 e V, x2 e V, Ax1 = Ax2 . Put 

h = x2 - x1 and define 

g(t) = I/J(x1 + th) (0 :$; t :$; 1). 

The convexity of V shows that x 1 + th e V for these t. Hence 

g'(t) = l/l'(x1 + th)h = 0 (0 :$; t :$; 1), 
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so that g(l) = g(O). But g(l) = I/J(x2) and g(O) = I/J(x1). This proves (74). 
By (74), 1/J(x) depends only on Ax, for x e V. Hence (73) defines q, 

unambiguously in A(V). It only remains to be proved that q, e rc'. 
Fix Yoe A(V), fix x0 e V so that Ax0 =Yo. Since Vis open, Yo has 

a neighborhood W in Y1 such that the vector 

x = X 0 + S(y - Yo) 

lies in V for all ye W. By (68), 

Ax = Ax0 + Y - Yo = Y • 

Thus (73) and (79) give 

(80) q,(y) = I/J(x0 - Sy0 + Sy) (y E W). 

This formula shows that q, e rc' in W, hence in A(V), since Yo was chosen 
arbitrarily in A(V). 

The proof is now complete. 

Here is what the theorem tells us about the geometry of the mapping F. 
If ye F(U) then y = F(H(x)) for some x e V, and (66) shows that Py = Ax. 

Therefore 

(81) y =Py+ q,(Py) (ye F(U)). 

This shows that y is determined by its projection Py, and that P, restricted 
to F(U), is a 1-1 mapping of F(U) onto A(V). Thus F(U) is an ''r-dimensional 
surface'' with precisely one point ''over'' each point of A(V). We may also 
regard F( V) as the graph of q,. 

If <l>(x) = F(H(x)), as in the proof, then (66) shows that the level sets of <I> 
(these are the sets on which <l> attains a given value) are precisely the level sets of 
A in V. These are ''flat'' since they are intersections with V of translates of the 
vector space %(A). Note that dim %(A) = n - r (Exercise 25). 

The level sets of F in U are the images under H of the flat level sets of <l> 
in V. They are thus ''(n - r )-dimensional surfaces'' in U. 

DETERMINANTS 

Determinants are numbers associated to square matrices, and hence to the 
operators represented by such matrices. They are O if and only if the corre
sponding operator fails to be invertible. They can therefore be used to decide 
whether the hypotheses of some of the preceding theorems are satisfied. They 
will play an even more important role in Chap. 10. 
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9.33 Definition If (j1, .•• ,jn) is an ordered n-tuple of integers, define 

(82) s(j1, ... , in) = fl sgn (jq - jp), 
p<q 

where sgn x = 1 if x > 0, sgn x = -1 if x < 0, sgn x = 0 if x = 0. Then 
s(j1, ... ,jn) = 1, -1, or 0, and it changes sign if any two of the j's are inter
changed. 

Let [A] be the matrix of a linear operator A on Rn, relative to the standard 
basis {e1, ... , en}, with entries a(i,j) in the ith row and jth column. The deter
minant of [A] is defined to be the number 

(83) 

The sum in (83) extends over all ordered n-tuples of integers (j1 , ... ,jn) with 
1 5.j, 5: n. 

The column vectors xi of [A] are 

n 

(84) xi = I a(i,j)ei (1 5.j 5: n). 
i= 1 

It will be convenient to think of det [A] as a function of the column vectors 
of [A]. If we write 

det (x1, ... , xn) = det [A], 

det is now a real function on the set of all ordered n-tuples of vectors in Rn. 

9.34 Theorem 

(a) If I is the identity operator on Rn, then 

det [I] = det ( e1, •.. , en) = 1. 

(b) det is a linear function of each of the column vectors xi, if the others are 
held fixed. 

(c) If [A] 1 is obtained from [A] by interchanging two columns, then 
det [A] 1 = -det [A]. 

(d) If [A] has two equal columns, then det [A]= 0. 

Proof If A = I, then a(i, i) = 1 and a(i,j) = 0 for i "I: j. Hence 

det [I] = s( 1, 2, ... , n) = 1, 

which proves (a). By (82), s(j1, ••• , jn) = 0 if any two of the.i's are equal. 
Each of the remaining n ! products in (83) contains exactly one factor 
from each column. This proves (b). Part (c) is an immediate consequence 
of the fact that s(j 1, •.• , in) changes sign if any two of the j's are inter
changed, and ( d) is a corollary of ( c ). 



FUNCTIONS OF SEVERAL VARIABLES 233 

9.35 Theorem If [A] and [B] are n by n matrices, then 

det ([Bj[A]) = det [B] det [A]. 

(85) 

(86) 

(87) 

Proof If x1, ... , xn are the columns of [A], define 

~s(X1, ... , Xn) = ~s[A] = det ([B][A]). 

The columns of [B][A] are the vectors Bx1, ... , Bxn. Thus 

~s(X1, ... , Xn) = det (Bx1, ... , Bxn). 

By (86) and Theorem 9.34, ~ 8 also has properties 9.34 (b) to (d). By (b) 
and (84), 

~ 8 [A] = ~B I a(i, l)e;, x2 , ... , Xn = I a(i, 1) ~ 8 (e;, x2 , ... , Xn). 
• • 

' ' 
Repeating this process with x2 , ••• , xn , we obtain 

~ 8 [A] = I a(i1, 1)a(i2 , 2) · · · a(in, n) ~ 8 (e; 1 , ••• , e;"), 

the sum being extended over all ordered n-tuples (i1, ... , in) with 
1 ~ ir ~ n. By (c) and (d), 

(88) ~B(e; 1 , • • •, e;n) = t(i1, •••,in) ~B(e1, •••,en), 

where t = 1, 0, or -1, and since [B][/] = [B], (85) shows that 

(89) ~ 8(e1, ... , en) = det [B]. 

Substituting (89) and (88) into (87), we obtain 

det ([B][A]) = { I a(i1 , 1) · · · a(in, n)t(i1 , ••• , in)} det [B], 

for all n by n matrices [A] and [B]. Taking B = I, we see that the above 
sum in braces is det [A]. This proves the theorem. 

9.36 Theorem A linear operator A on Rn is invertible if and only if det [A] "# 0. 

Proof If A is invertible, Theorem 9.35 shows that 

det [A] det [A- 1] = det [AA- 1] = det [/] = 1, 

so that det [A] "# 0. 

If A is not invertible, the columns x1, ... , xn of [A] are dependent 
(Theorem 9.5); hence there is one, say, xk, such that 

(9~ xk+I0~=0 
J¢k 

for certain scalars cJ. By 9.34 (b) and (d), xk can be replaced by xk + cJ xJ 
without altering the determinant, if j "I: k. Repeating, we see that xk can 
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be replaced by the left side of (90), i.e., by 0, without altering the deter
minant. But a matrix which has O for one column has determinant 0. 
Hence det [A] = 0. 

9.37 Remark Suppose {e1, ••• , en} and {u1, ... , un} are bases in R". 
Every linear operator A on R" determines matrices [A] and [A]u, with entries 
aii and o:1i, given by 

Ae- = "a-1e-J L.,. I 1, 
I 

If u1 = Be1 = 'f.b 11 e1, then Au1 is equal to 

L r:t.ki Bek = L r:t.kJ L b1k ei = L L bik r:t.kJ ei, 
k k i i k 

and also to 

Thus I.bik o:ki = 'f.a1k bkJ, or 

(91) [B][A]u = [A][B]. 

Since B is invertible, det [B] "# 0. Hence (91), combined with Theorem 9.35, 
shows that 
(92) det [A Ju = det [A]. 

The determinant of the matrix of a linear operator does therefore not 
depend on the basis which is used to construct the matrix. It is thus meaningful 
to speak of the determinant of a linear operator, without having any basis in mind. 

9.38 Jacobians If f maps an open set E c R" into R", and if f is differen~ 
tiable at a point x e E, the determinant of the linear operator f'(x) is called 
the Jacobian off at x. In symbols, 

(93) 

We shall also use the notation 

(94) 

J1(x) = det f'(x). 

o(y1, · · ·, Yn) 
O(X1, ... , Xn) 

for J1(x), if (Y1, ... , Yn) = f (x1, ... , Xn). 
In terms of Jacobians, the crucial hypothesis in the inverse function 

theorem is that J1(a) "# 0 (compare Theorem 9.36). If the implicit function 
theorem is stated in terms of the functions (59), the assumption made there on 
A amounts to 
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DERIVATIVES OF HIGHER ORDER 

9.39 Definition Suppose f is a real function defined in an open set E c R", 
with partial derivatives D 1/, ••• , Dnf If the functions D1f are themselves 
differentiable, then the second-order partial derivatives off are defined by 

(i,j=l, ... ,n). 

If all these functions Di1f are continuous in E, we say that/is of class ct'' in E, 
or that/ e ct"(E). 

A mapping f of E into Rm is said to be of class ct" if each component off 
is of class ct". 

It can happen that Di1f "I: D1if at some point, although both derivatives 
exist (see Exercise 27). However, we shall see below that D11f= D11/whenever 
these derivatives are continuous. 

For simplicity (and without loss of generality) we state our next two 
theorems for real functions of two variables. The first one is a mean value 
theorem. 

9.40 Theorem Suppose f is de.fined in an open set E c R2
, and D 1 f and D21 f 

exist at every point of E. Suppose Q c E is a closed rectangle with sides parallel 
to the coordinate axes, having (a, b) and (a +h, b + k) as opposite vertices 
(h "I: 0, k "I: 0). Put 

(95) 

fl.(/, Q) = f(a + h, b + k) - f(a + h, b) - f(a, b + k) + f(a, b). 

Then there is a point (x, y) in the interior of Q such that 

fl.(/, Q) = hk(D21 f)(x, y). 

Note the analogy between (95) and Theorem 5.10; the area of Q is hk. 

Proof Put u(t) = f(t, b + k) - f(t, b). Two applications of Theorem 5.10 
show that there is an x between a and a + h, and that there is a y between 
b and b + k, such that 

fl.(f, Q) = u(a + h) - u(a) 

= hu'(x) 

= h[(D1f)(x, b + k) - (D1f)(x, b)] 

= hk(D21[)(x, y). 

9.41 Theorem Suppose f is de.fined in an open set E c R 2
, suppose that D 1f, 

D21/, and D2 f exist at every point of E, and D21 f is continuous at some point 
(a, b) e E. 
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Then D12/ exists at (a, b) and 

(96) (D12f)(a, b) = (D21f)(a, b). 

Corollary D21/= D 12/iffe <t''(E). 

(97) 

Proof Put A = (D21 f)(a, b). Choose e > 0. If Q is a rectangle as in 
Theorem 9.40, and if hand k are sufficiently small, we have 

I A - (D21f)(x, y) I < e 

for all (x, y) e Q. Thus 

ll(f, Q) - A < 
hk 

6
' 

by (95). Fix h, and let k ➔ 0. Since D2 f exists in E, the last inequality 
implies that 

1 (D2 f)(a + h, b) - (D2/)(a, b) 
h - A ~ e. 

Since e was arbitrary, and since (97) holds for all sufficiently small 
h =/:- 0, it follows that (D12/)(a, b) = A. This gives (96). 

DIFFERENTIATION OF INTEGRALS 

Suppose <p is a function of two variables which can be integrated with respect 
to one and which can be differentiated with respect to the other. Under what 
conditions will the result be the same if these two limit processes are carried out 
in the opposite order? To state the question more precisely: Under what 
conditions on <p can one prove that the equation 

(98) 
d b b O<p 
d <p(x, t) dx = 

0 
(x, t) dx 

t a a t 

is true? (A counter example is furnished by Exercise 28.) 
It will be convenient to use the notation 

(99) <pt(x) = <p(X, t). 

Thus <pt is, for each t, a function of one variable . 

• 

9.42 Theorem Suppose 

(a) <p(x, t) is de.fined/or a~ x Sb, c ~ t S d; 
(b) ix is an increasing function on [a, b]; 



(100) 

(101) 
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(c) <pt e &l(c,:) for every t e [c, d]; 
( d) c < s < d, and to every B > 0 corresponds a b > 0 such that 

I (D2 <p)(x, t) - (D2 <p)(x, s) I < B 

Jor all x e [a, b] and/or all t e (s - b, s + b). 

De.fine 
b 

f(t) = <p(x, t) dc,:(x) 
a 

Then (D2 <p)s e &l(c,:),/'(s) exists, and 

b 

(c ~ t ~ d). 

/'(s) = (D2 <p)(x, s) dc,:(x). 
a 

Note that (c) simply asserts the existence of the integrals (100) for all 
t e [c, d]. Note also that (d) certainly holds whenever D 2 <pis continuous on the 
rectangle on which <p is defined. 

(102) 

(103) 

Proof Consider the difference quotients 

'''( ) _ <p(x, t) - <p(x, s) .,, x,t ------
t-s 

for O < It - sl < b. By Theorem 5.10 there corresponds to each (x, t) a 
number u between s and t such that 

1/J(x, t) = (D2 <p)(x, u). 

Hence (d) implies that 

1/J(x, t) - (D2 <p)(x, s)I < B 

Note that 

f(t) - f(s) 

t - s 
--

(a~ x ~ b, 0 < it - J'I < b). 

b 

1/J(x, t) da(x). 
a 

By (102), 1/Jt ➔ (D2 <p)s, uniformly on [a, b], as t ➔ s. Since each 
1/Jt e &l(a), the desired conclusion follows from (103) and Theorem 7.16. 

9.43 Example One can of course prove analogues of Theorem 9.42 with 
(- oo, oo) in place of [a, b]. Instead of doing this, let us simply look at an 
example. Define 

(104) /(t) = e-xi cos (xt) dx 
-Cl) 
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and 

(105) g(t) = -
00 

xe-x2 sin (xt) dx, 
-oo 

for - oo < t < oo. Both integrals exist (they converge absolutely) since the 
absolute values of the integrands are at most exp ( - x2

) and Ix I exp ( -x2
), 

respectively. 
Note that g is obtained from/by differentiating the integrand with respect 

to t. We claim that/ is differentiable and that 

(106) f'(t) = g(t) ( - 00 < t < 00 ). 

To prove this, let us first examine the difference quotients of the cosine: 
if /J > 0, then 

COS (ix + /J) - COS (X • 1 «+P . . 
(107) fJ + sin ix = p « (sin ix - sin t) dt. 

Since I sin ix - sin t I s;; It - ix I, the right side of (107) is at most /J/2 in absolute 
value; the case fJ < 0 is handled similarly. Thus 

(108) cos c ix + /3) - cos ix • I n I 
/J + Sill IX :$;; p 

for all /J (if the left side is interpreted to be O when /J = 0). 
Now fix t, and fix h ¥- 0. Apply (108) with ix = xt, fJ = xh; it follows from 

(104) and (105) that 

that 

(109) 

-Cl) 

When h-+ 0, we thus obtain (106). 
Let us go a step further: An integration by parts, applied to (104), shows 

/( ) 2 
00 

_ 2 sin (xt) d 
t = xe x -- x. 

-oo t 

Thus tf(t) = - 2g(t), and (106) implies now that f satisfies the differential 
equation 

(110) 2/'(t) + tf(t) = 0. 

If we solve this differential equation and use the fact that /(0) = J n (see Sec. 
8.21), we find that 

(111) 
t2 

f(t) = J; exp -
4 

. 

The integral (104) is thus explicitly determined. 

' ' 
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EXERCISES 

1. If Sis a nonempty subset of a vector space X, prove (as asserted in Sec. 9.1) that 
the span of S is a vector space. 

2. Prove (as asserted in Sec. 9.6) that BA is linear if A and Bare linear transformations. 
Prove also that A - 1 is linear and invertible. 

3. Assume A E L(X, Y) and Ax= 0 only when x = 0. Prove that A is then 1-1. 

4. Prove (as asserted in Sec. 9.30) that null spaces and ranges of linear transforma
tions are vector spaces. 

S. Prove that to every A E L(R", R1
) corresponds a unique y ER" such that Ax= x •y. 

Prove also that IIA 11 = I y I. 
Hint: Under certain conditions, equality holds in the Schwarz inequality. 

6. If/ (0, 0) = 0 and 

xy 
f(x, Y) = x2 + y2 if (x, y) ::/== (0, 0), 

prove that (D1/)(x, y) and (D2f)(x, y) exist at every point of R2, although/ is 
not continuous at (0, 0). 

7. Suppose that/ is a real-valued function defined in an open set E c R", and that 
the partial derivatives D1/, ••• , Dnf are bounded in E. Prove that/ is continuous 
in E. 

Hint: Proceed as in the proof of Theorem 9.21. 

8. Suppose that/ is a differentiable real function in an open set E c R", and that/ 
has a local maximum at a point x E £. Prove that /'(x) = 0. 

9. If f is a differentiable mapping of a connected open set E c R" into Rm, and if 
f'(x) = 0 for every x E £, prove that f is constant in E. 

10. If/ is a real function defined in a convex open set E c R", such that (D1/)(x) = 0 
for every x E £, prove that /(x) depends only on x2, ... , Xn. 

Show that the convexity of E can be replaced by a weaker condition, but 
that some condition is required. For example, if n = 2 and E is shaped like a 
horseshoe, the statement may be false. 

11. If I and g are differentiable real functions in R", prove that 

v'(/g) =fv'g + g v'f 

and that v'(l //) = - 1- 2v' f wherever/::/== 0. 

12. Fix two real numbers a and b, 0 <a< b. Define a mapping f = (/1,/2 ,/3) of R 2 

into R 3 by 

.fi(s, t) = (b + a cos s) cost 

l2(s, t) = (b + a cos s) sin t 

f3(s, t) = a sins. 
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Describe the range Koff. (It is a certain compact subset of R 3
.) 

(a) Show that there are exactly 4 points p EK such that 

Find these points. 
(b) Determine the set of all q EK such that 

(c) Show that one of the points p found in part (a) corresponds to a local maxi

mum of / 1 , one corresponds to a local minimum, and that the other two are 
neither (they are so-called ''saddle points''). 

Which of the points q found in part (b) correspond to maxima or minima? 
(d) Let ,\ be an irrational real number, and define g(t) = f(t, ,\t). Prove that g is a 

1-1 mapping of R 1 onto a dense subset of K. Prove that 

I g'(t) l 2 = a2 + ,\2 (b + a cos t) 2
• 

13. Suppose f is a differentiable mapping of R 1 into R 3 such that I f(t) I= 1 for every t. 
Prove that f'(t) · f(t) = 0. 

Interpret this result geometrically. 

14. Define /(0, 0) = 0 and 

x3 
f(x, Y) = 2 + 2 

X y 
if (x, y) ::/== (0, 0). 

-
(a) Prove that D1/'and D2J are bounded functions in R 2. (Hence/ is continuous.) 
(b) Let u be any unit vector in R 2

• Show that the directional derivative (Duf)(O, 0) 

exists, and that its absolute value is at most 1. 
(c) Let y be a differentiable mapping of R 1 into R 2 (in other words, y is a differ

entiable curve in R 2
), with y(O) = (0, 0) and I y'(O) I> 0. Put g(t) = /(y(t)) and 

prove that g is differentiable for every t E R1
• 

If y E <€', prove that g E <€'. 
(d) In spite of this, prove that/ is not differentiable at (0, 0). 

Hint: Formula (40) fails. 

15. Define/ (0, 0) = 0, and put 

4 6 2 

/( )
- 2 2 2 2 X y 

X, Y - X + Y - X Y - (x4 + y2)2 

if (x, y) ::/== (0, 0). 
(a) Prove, for all (x, y) E R 2

, that 

4x4y2 :::;; (x4 + y2)2. 

Conclude that/ is continuous. 
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(b) For O ~ 0 ~ 27T, - oo < t < oo, define 

ga(t) = f(t cos 0, t sin 0). 

Show that ua(O) = 0, g;(O) = 0, g;(O) = 2. Each ga has therefore a strict local 
minimum at t = 0. 

In other words, the restriction of/ to each line through (0, 0) has a strict 
local minimum at (0, 0). 
(c) Show that (0, 0) is nevertheless not a local minimum for/, since/(x, x 2

) = -x4
• 

16. Show that the continuity of f' at the point a is needed in the inverse function 
theorem, even in the case n = 1 : If 

1 
f(t)=t+2t 2 sin -

t 

for t ::/== 0, and /(0) = 0, then /'(O) = 1, /' is bounded in (-1, 1), but J is not 
one-to-one in any neighborhood of 0. 

17. Let f = (/1,/2) be the mapping of R 2 into R 2 given by 

l1(X, y) = ex cos Y, 

(a) What is the range of/? 
(b) Show that the Jacobian of J is not zero at any point of R 2

• Thus every point 
of R 2 has a neighborhood in which/ is one-to-one. Nevertheless,/ is not one-to
one on R 2

• 

(c) Put a = (0, 77/3), b = /(a), let g be the continuous inverse of f, defined in a 
neighborhood of b, such that g(b) = a. Find an explicit formula for g, compute 
f'(a) and g'(b), and verify the formula (52). 
(d) What are the images tinder f of lines parallel to the coordinate axes? 

18. Answer analogous questions for the mapping defined by 

u = x2 -y2, V = 2xy. 

19. Show that the system of equations 

3x + y - z + u2 = 0 

x-y+2z+u=0 

2x + 2y - 3z + 2u = 0 

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms 
of x; but not for x, y, z in terms of u. 

20. Take n = m = 1 in the implicit function theorem, and interpret the theorem (as 
well as its proof) graphically. 

21. Define /in R 2 by 

f(x, y) = 2x3 
- 3x2 + 2y3 + 3y2

• 

(a) Find the four points in R 2 at which the gradient of/ is zero. Show that/ has 
exactly one local maximum and one local minimum in R2 • 
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(b) Let S be the set of all (x, y) e R2 at which f(x, y) = 0. Find those points of 
S that have no neighborhoods in which the equation f(x, y) = 0 can be solved for 
yin terms of x (or for x in terms of y). Describe Sas precisely as you can. 

22. Give a similar discussion for 

f(x, y) = 2x3 + 6xy2 - 3x2 + 3y2
• 

23. Define/in R 3 by 

Show that /(0, 1, -1) = 0, (D1f) (0, 1, -1) :f 0, and that there exists therefore a 
differentiable function gin some neighborhood of (1,-1) in R2, such that 
g(l, -1) = 0 and 

Find (D1o)(l, -1) and (D2g)(l, -1). 
24. For (x, y) =f (0, 0), define f = (/i,/2) by 

x2-y2 
!1 (x, y) = x2 + y2' 

Compute the rank of f'(x, y), and find the range off. 
25. Suppose A e L(R", Rm), let r be the rank of A. 

(a) Define S as in the proof of Theorem 9.32. Show that SA is a projection in R" 

whose null space is .;V(A) and whose range is Bf(S). Hint: By (68), SASA = SA. 

(b) Use (a) to show that 

dim .;V(A) + dim 9t(A) = n. 

26. Show that the existence (and even the continuity) of D12/ does not imply the 
existence of D1f. For example, let/(x, y) = g(x), whereg is nowhere differentiable. 

27. Put/(0, 0) = 0, and 

f
(x ) = xy(x2 - y2) 

, Y x2 + y2 

if (x, y) =f (0, 0). Prove that 
(a) f, D1/, D2f are continuous in R2; 
(b) D12/and D21/exist at every point of R2, and are continuous except at (0, O); 
(c) (D12/)(0, 0) = 1, and (D21/)(0, 0) = -1. 

28. For t ~ 0, put 

X 

cp(x, t) = -x + 2v1 
0 

and put cp(x, t) = -cp(x, It I) if t < 0. 

(0 :5: x :5:'Vt) 
< v, :s: x :s: 2 v, > 
(otherwise), 
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Show that cp is continuous on R2, and 

for all x. Define 

1 

f(t) = cp(x, t) dx. 
-1 

Show that f(t) = t if It I<¼. Hence 

1 

f'(O) -=I (D2cp)(x, 0) dx. 
-1 

29. Let Ebe an open set in R". The classes~'(£) and ~H(E) are defined in the text. 
By induction, ~<k>(E) can be defined as follows, for all positive integers k: To say 
that/ e ~<k>(E) means that the partial derivatives D1/, ... , Dnfbelong to ~<"- 1>(£). 

Assume f e ~<k>(E)~ and show (by repeated application of Theorem 9.41) 
that the kth-order derivative 

D1112 ... ,kl= D11D12 ... D,"f 

is unchanged if the subscripts i1, ... , ik are permuted. 
For instance, if n ~ 3, then 

D1213/ = D3112/ 

for every f e ~<4 >, 

30. Let f e ~<m>(£), where E is an open subset of R". Fix a e E, and suppose x e R" 

is so close to O that the points 

p(t) =a+ tx 

lie in E whenever O ~ t =:;;; 1. Define 

h(t) = f(p(t)) 

for all t e R1 for which p(t) e E. 
(a) For 1 ::;;: k =:;;; m, show (by repeated application of the chain rule) that 

h<">(t) = I: (D11 ... ,k/)(p(t)) X11 ... x,". 

The sum extends over all ordered k-tuples (i1, ... , ik) in which each i1 is one of the 
integers 1, ... , n. 
(b) By Taylor's theorem (5.15), 

m-1 h(k)(Q) h<m>(t) 
h(l) = L k' + ' 

k•O , m, 

for some t e (0, 1). Use this to prove Taylor's theorem inn variables by showing 
that the formula 
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m-1 1 
/(a+ x) = :E k' L (D,1 .•. 11<.f)(a)x,1 • • • x,1<. + r(x) 

k.•0 • 

represents /(a + x) as the sum of its so-called ''Taylor polynomial of degree 
m - 1,'' plus a remainder that satisfies 

1
. r(x) _ 

0 iml I - . x-+O X m- l 

Each of the inner sums extends over all ordered k-tuples (i1, ... , i1<.), as in 
part (a); as usual, the zero-order derivative off is simply f, so that the constant 
term of the Taylor polynomial off at a is /(a). 
(c) Exercise 29 shows that repetition occurs in the Taylor polynomial as written in 
part (b). For instance, D113 occurs three times, as D113, D131, D311, The sum of 
the corresponding three terms can be written in the form 

3(Df D3/)(a)xf X3. 

Prove (by calcuJating how often each derivative occurs) that the Taylor polynomial 
in (b) can be written in the form 

~(D~1 ···D!n/)(a) 51 Sn 
"-' I I X1 '''Xn• 

S ••• s 
1 • n • 

Here the summation extends over all ordered n-tuples (s1, ... , sn) such that each 
s, is a nonnegative integer, and s1 + · · · + sn ::::;; m - 1 . 

31. Suppose f e ~< 3 > in some neighborhood of a point a e R 2
, the gradient off is 0 

at a, but not all second-order derivatives of/ are O at a. Show how one can then 
determine from the Taylor polynomial off at a ( of degree 2) whether f has a local 
maximum, or a local minimum, or neither, at the point a. 

Extend this to Rn in place of R 2
• 



INTEGRATION OF DIFFERENTIAL FORMS 

Integration can be studied on many levels. In Chap. 6, the theory was developed 
for reasonably well-behaved functions on subintervals of the real line. ln 
Chap. 11 we shall encounter a very highly developed theory of integration that 
can be applied to much larger classes of functions, whose domains are more 
or less arbitrary sets, not necessarily subsets of Rn. The present chapter is 
devoted to those aspects of integration theory that are closely related to the 
geometry of euclidean spaces, such as the change of variables formula, line 
integrals, and the machinery of differential forms that is used in the statement 
and proof of then-dimensional analogue of the fundamental theorem of calculus, 
namely Stokes' theorem. 

INTEGRATION 

10.1 Definition Suppose Jk is a k-cell in Rk, consisting of all 

X = (x1, ... , Xk) 

such that 
(1) a-< X· < b-

' - I - I 
(i = 1, ... , k), 
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Ji is the j-cell in Ri defined by the first j inequalities (1), and f is a real con
tinuous function on Jk. 

Putf =/2, and define/2_ 1 on Jk-l by 

bk 

h-1(X1, • • •, xk-1) = h(X1, • •., xk-1, xk) dxk. 
Ok 

The uniform continuity of /2 on Jk shows that h-i is continuous on Jk- 1 • 

Hence we can repeat this process and obtain functions Jj, continuous on 11, such 
thatiJ_ 1 is the integral ofiJ, with respect to xi, over [aj, b1]. After k steps we 
arrive at a number Jo, which we call the integral off over Jk; we write it in the 
form 

(2) f(x) dx or f. 
Jk Jk 

A priori, this definition of the integral depends on the order in which the 
k integrations are carried out. However, this dependence is only apparent. To 
prove this, let us introduce the temporary notation L(f) for the integral (2) 
and L'(f) for the result obtained by carrying out the k integrations in some 
other order. 

10.2 Theorem For every f E ~(Jk), L(f) = L'(f). 

Proof If h(x) = h1 (x1) • • • hk(xk), where hi E ~([ai, bi]), then 

k b1 

L(h) = TT hi(xi) dxi = L'(h). 
i= 1 a1 • 

lf st/ is tl1e set of all finite sums of such functions h, it follows that L(g) = 
L'(g) for all g E SIi. Also, SIi is an algebra of functions on Jk to which the 
Stone-Weierstrass theorem applies. 

k 

Put V = TT (bi - ai). ]f fe ~(Jk) and e > 0, there exists g e d such 
1 

that f - g\ < e/ V, where If is defined as max lf(x) I (x E Jk). Then 
IL(f-g)I < e, IL'(f-g)I < e, and since 

L(f) - L'(f) = L(f - g) + L'(g - f), 

we conclude that I L(f) - L'(f) I < 2e. 
In this connection, Exercise 2 is relevant. 

10.3 Definition The support of a (real or complex) function f on Rk is the 
closure of the set of all points x E Rk at which f(x) -:/: 0. If f is a continuous 
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function with compact support, let Jk be any k-cell which contains the support 
off, and define 

(3) I= f. 
Rf< Jk 

The integral so defined is evidently independent of the choice of Jk, provided 
only that Jk contains the support off. 

It is now tempting to extend the definition of the integral over Rk to 
functions which are limits (in some sense) of continuous functions with compact 
support. We do not want to discuss the conditions under which this can be 
done; the proper setting for this question is the Lebesgue integral. We shall 
merely describe one very simple example which will be used in the proof of 
Stokes' theorem. 

10.4 Example Let Qk be the k-simplex which consists of all points x = 
(x1, ••• , xk) in Rk for which x1 + · · · + xk:::;; I and x, ~ 0 foi i = I, ... , k. If 
k = 3, for example, Qk is a tetrahedron, with vertices at 0, e1, e2 , e3 . If/ e <c(Qk), 
extend f to a function on Jk by setting /(x) = 0 off Qk, and define 

(4) I= f. 
Qk Jk 

Here Jk is the ''unit cube'' defined by 

0 :::;; x, :::;; I ( I :::;; i :::;; k ). 

Since f may be discontinuous on [k, the existence of the integral on the 
right of ( 4) needs proof. We also wish to show that this integral is independent 
of the order in which the k single integrations are carried out. 

To do this, suppose O < D < 1, put 

(5) 

and define 

(6) 

Then Fe <c(/k). 

I (t :::;; 1 - b) 

() 
(I - t) 

<pt = 
b 

(l - b < t:::;; l) 

0 (l < t), 

F(x) = cp(x1 + · · · + xk)f(x) 

Put y = (x1, •.• , xk_ 1), x = (y, xk). For each ye [k- 1
, the set of all xk 

such that F(y, xk) -:/: /(y; xk) is either empty or is a segment whose length does 
not exceed b. Since O :::;; <p :::;; 1, it follows that 

(7) 
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where If I has the same meaning as in the proof of Theorem 10.2, and Fk-i, 
h-i are as in Definition 10.1. 

As~--+ 0, (7) exhibits/2_ 1 as a uniform limit of a sequence of continuous 
functions. Thus fk- i e ~(/k- l ), and the further integrations present no problem. 

This proves the existence of the integral (4). Moreover, (7) shows that 

(8) F(x) dx - /(x) dx I :::; ~ If I. 
Jk Jk 

Note that (8) is true, regardless of the order in which the k single integrations 
are carried out. Since Fe ~(/k), JF is unaffected by any change in this order. 
Hence (8) shows that the same is true of Jf 

This completes the proof. 
Our next goal is the change of variables formula stated in Theorem 10.9. 

To facilitate its proof, we first discuss so-called primitive mappings, and parti
tions of unity. Primitive mappings will enable us to get a clearer picture of the 
local action of a ~' -mapping with invertible derivative, and partitions of unity 
are a very useful device that makes it possible to use local information in a 
global setting. 

PRIMITIVE MAPPINGS 

10.5 Definition If G maps an open set E c Rn into Rn, and if there is an 
integer m and a real function g with domain E such that 

(9) G(x) = L xi ei + g(x)em (x E £), 
i:il=m 

then we call G primitive. A primitive mapping is thus one that changes at most 
one coordinate. Note that (9) can also be written in the form 

(10) G(x) = X + [g(x) - xmlem. 

If g is differentiable at some point a e £, so is G. The matrix [ocii] of the 
operator G'(a) has 

(11) (D1g)(a), ... , (Dm g)(a), ... , (Dn g)(a) 

as its mth row. For j-:/: m, we have °'Ji= 1 and °'iJ = 0 if i-:/: j. The Jacobian 
of G at a is thus given by 

(12) JG(a) = det[G'(a)] = (Dm g)(a), 

and we see (by Theorem 9.36) that G'(a) is invertible if and only if (Dm g)(a)-:/: 0. 
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10.6 Definition A linear operator B on Rn that interchanges some pair of 
members of the standard basis and leaves the others fixed will be called a flip. 

For example, the flip B on R4 that interchanges e2 and e4 has the form 

(13) B(x1 el+ X2 e2 + X3 e3 + X4e4) = X1 el+ X2 e4 + X3 e3 + X4e2 

or, equivalently, 

(14) B(x1 el+ X2 e2 + X3 e3 + X4e4) = X1 el+ X4e2 + X3 e3 + X2 e4. 

Hence B can also be thought of as interchanging two of the coordinates, rather 
than two basis vectors. 

In the proof that follows, we shall use the projections P0 , ••• , Pn in Rn, 
defined by PO x = 0 and 

(15) 

for 1 :::;; m :::;; n. Thus Pm is the projection whose range and null space are 
spanned by {e1, •.• , em} and {em+i, ... , en}, respectively. 

10.7 Theorem Suppose Fis a <i'-mapping of an open set E c Rn into Rn, 0 EE, 
F(O) = 0, and F'(O) is invertible. 

Then there is a neighborhood of O in Rn in which a representation 

(16) F(x) = B · · · B G o • • • o G (x) 1 n-1 n 1 

is valid. 
In (16), eac/1 G i is a primitive CC' -mapping in some neighborhood of O; 

Gi(O) = 0, G~(O) is invertible, and each Bi is either a flip or the identity operator. 

Briefly, (16) represents F locally as a composition of primitive mappings 
and flips. 

(17) 

(18) 

(19) 

Proof Put F = F 1 • Assume 1 :::;; m :::;; n - 1, and make the following 
induction hypothesis (which evidently holds form = 1): 

Vm is a neighborhood of 0, Fm E CC'(Vm) ,Fm(O) = 0, F;,,(O) is invertible, 
and 

Pm-lFm(x) = pm-1 X 

By (17), we have 

n 

Fm(x) = Pm_ 1X + L oci(x)ei, 

wher·e °'m, ... , °'n are real CC'-functions in Vm. Hence 
n 

F;,,(O)em = L (Dm c.< 1)(0)ei. 
i=m 
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(20) 

(21) 

(22) 

(23) 

(24) 

Since F~(O) is invertible, the left side of (19) is not 0, and therefore there 
is a k such that m :::;; k:::;; n and (Dm ak)(O) -:/: 0. 

Let Bm be the flip that interchanges m and this k (if k = m, Bm is the 
identity) and defi11e 

Then Gm e ~'(Vm), Gm is primitive, and G~(O) is invertible, since 
(Dm ak)(O) -:/: 0. 

The inverse function theorem shows therefore that there is an open 
set um, with O e Um c Vm, such that Gm is a 1-1 mapping of um onto a 
neighborhood Vm+ 1 of 0, in which G,; 1 is continuously differentiable. 
Define Fm+l by 

Then Fm+i e ~'(Vm+ 1), Fm+ 1(0) = 0, and F~+ 1(0) is invertible (by 
the chain rule). Also, for x e Um, 

so that 

PmFm+ 1(Gm(x)) =PmBmFm(x) 

= Pm[Pm_ 1X + ak(x)em + · · ·] 
=Pm-1X + ak(x)em 

=PmGm(X) 

Our induction hypothesis holds therefore with m + 1 in place of m. 
[In (22), we first used (21), then (18) and the definition of Bm, then 

the definition of Pm, and finally (20).] 
Since Bm Bm = I, (21 ), with y = Gm(x), is equivalent to 

If we apply this with m = 1, ... , n - 1, we successively obtain 

F=F1 =B1F2 °G1 
= B1B2 F 3 o G2 o G1 = ... 
= B1 • • • Bn-1Fn o Gn-1 o • • • o G1 

in some neighborhood of 0. By (17), F n is primitive. This completes the 
proof. 
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PARTITIONS OF UNITY 

10.8 Theorem Suppose K is a compact subset of Rn, and {Vix} is an open cover 
of K. Then there exist functions 1/11, ••• , I/ls e <i(Rn) such that 

(a) 0 =:;I/Ii=:; 1 for 1 ~ i =:; s; 
(b) each 1/1 i has its support in some Vix, and 
(c) 1/11(x) + · · · + 1/Js(x) = 1 for every x e K. 

Because of (c), {I/Ji} is called a partition of unity, and (b) is sometimes 
expressed by saying that { 1/1 i} is subordinate to the cover { Vix}. 

Corollary If f e <i(Rn) and the support off lies in K, then 

s 

(25) I= I I/Iii• 
i= 1 

Each 1/1 if has its support in some V « • 

The point of (25) is that it furnishes a representation off as a sum of 
continuous functions 1/1 if with ''small'' supports. 

(26) 

(27) 

(28) 

(29) 

(30) 

Proof Associate with each x e Kan index a(x) so that x e V«(x). Thetl 
there are open balls B(x) and W(x), centered at x, with 

B(x) c W(x) c W(x) c Vix(x). 

Since K is compact, there are points x1, ..• , xs in K such that 

K c B(x1) u · · · u B(xs). 

By (26), there are functions <p 1 , ••• , <ps e <i(Rn), such that <p,(x) = 1 on 
B(xi), <pi(x) = 0 outside W(xi), and O =:; <p,(x) =:; 1 on Rn. Define 1/11 = <p1 
and 

for i = 1, ... , s - 1. 
Properties (a) and (b) are clear. The relation 

1/11 + ... +1/11 = 1 - (1 - ({)1) ••• (1 - <p,) 

is trivial for i = 1. If (29) holds for some i < s, addition of (28) and (29) 
yields (29) with i + 1 in place of i. It follows that 

s s 

I 1/1 i<x) = 1 - TT [1 - <p 1(x)l 
1=1 i=l 

lf x e K, then x e B(x,) for some i, hence <pi(x) = 1, and the product in 
(30) is 0. This proves (c). 
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CHANGE OF VARIABLES 

We can now describe the effect of a change of variables on a multiple integral. 
For simplicity, we confine ourselves here to continuous functions with compact 
support, although this is too restrictive for many applications. This is illustrated 
by Exercises 9 to 13. 

10.9 Theorem Suppose Tis a 1-1 ({J'-mapping of an open set E c Rk into Rk 
such that J T(x) :;f Of or all x e E. If f is a continuous function on Rk whose support 
is compact and lies in T(E), then 

(31) f(y) dy = f(T(x))IJT(x)I dx. 
Rk Rk 

We recall that JT is the Jacobian of T. The assumption JT(x) :;f O implies, 
by the inverse function theorem, that r -1 is continuous on T (E), and this 
ensures that the integrand on the right of (31) has compact support in E 
(Theorem 4.14). 

The appearance of the absolute value of JT(x) in (31) may call for a com
ment. Take the case k = 1, and suppose Tis a 1-1 ({J'-m2pping of R 1 onto R 1• 

Then JT(x) = T'(x); and if Tis increasing, we have 

(32) f(y) dy = f(T(x))T'(x) dx, 
R1 R1 

by Theorems 6.19 and 6.17, for all continuous/with compact support. But if 
T decreases, then T'(x) < O; and if f is positive in the interior of its support, 
the left side of (32) is positive and the right side is negative. A correct equation 
is obtained if T' is replaced by I T' I in (32). 

The point is that the integrals we are now considering are integrals of 
functions over subsets of Rk, and we associate no direction or orientation with 
these subsets. We shall adopt a different point of view when we come to inte
gration of differential forms over surfaces. 

Proof It follows from the remarks just made that (31) is true if Tis a 
primitive ({J'-mapping (see Definition 10.5), and Theorem 10.2 shows 
that (31) is true if Tis a linear mapping which merely interchanges two 
coordinates. 

If the theorem is true for transformationsP, Q, and if S(x) = P(Q(x)), 
then 

f (z) dz = f(P(y)) I J p(y) I dy 

= f(P(Q(x)))IJp(Q(x))I IJa(x)I dx 

= f(S(x)) I Js(x) I dx, 
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• since 

J p(Q(x))Ja(x) = det P'(Q(x)) det Q'(x) 

= det P'(Q(x))Q'(x) = det S'(x) = J5(x), 

by the multiplication theorem for determinants and the chain.rule. Thus 
the theorem is also true for S. 

Each point a EE has a neighborhood Uc E in which 

(33) T(x) = T(a) + B1 • • • Bk_ 1Gk O Gk-t O • • • 0 G1(x-a), 

where Gi and Bi are as in Theorem 10.7. Setting V = T(U), it follows 
that (31) holds if the support off lies in V. Thus: 

Each pointy E T(E) lies in an open set Vy c T(E) such that (31) holds 
for all continuous functions whose support lies in Vy. 

Now let/be a continuous function with compact support Kc T(E). 
Since { Vy} covers K, the Corollary to Theor~m 10.8 shc,vs that f = 'f.1/1 if, 
where each 1/J i is continuous, and each 1/J i has its support in some Vy• 
Thus (31) holds for each 1/Jif, and hence also for their sumf 

DIFFERENTIAL FORMS 

We shall now develop some of the machinery that is needed for the n-dimen
sional version of the fundamental theorem of calculus which is usually called 
Stokes' t/1eorem. The original form of Stokes' theorem arose in applications of 
vector analysis to electromagnetism and was stated in terms of the curl of a 
vector field. Green's theorem and the divergence theorem are other special 
cases. These topics are briefly discussed at the end of the chapter. 

It is a curious feature of Stokes' theorem that the only thing that is difficult 
about it is the elaborate structure of definitions that are needed for its statement. 
These definitions concern differential forms, their derivatives, boundaries, and 
orientation. Once these concepts are understood, the statement of the theorem 
is very brief and succinct, and its proof presents little difficulty. 

Up to now we have considered derivatives of functions of several variables 
only for functions defined in open sets. This was done to avoid difficulties that 
can occur at boundary points. It will now be convenient, however, to discuss 
differentiable functions on compact sets. We the ref ore adopt the following 
convention: 

To say that f is a <c'-mapping (or a <c''-mapping) of a compact set 
D c Rk into Rn means that there is a <c'-mapping (or a <c''-mapping) g of 
an open set W c Rk into Rn such that D c W and such that g(x) = f(x) for 
all x e D. 
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10.10 Definition Suppose E is an open set in Rn. A k-surface in E is a ({J' -

mapping <I> from a compact set D c Rk into E. 
D is called the parameter domain of <I>. Points of D will be denoted by 

u = (u1, ••• , uk). 
We shall confine ourselves to the simple situation in which D is either a 

k-cell or the k-simplex Qk described in Example 10.4. The reason for this is 
that we shall have to integrate over D, and we have not yet discussed integration 
over more complicated subsets of Rk. It will be seen that this restriction on D 
(which will be tacitly made from now on) entails no significant loss of generality 
in the resulting theory of differential forms. 

We stress that k-surfaces in E are defined to be mappings into E, not 
subsets of E. This agrees with our earlier definition of curves (Definition 6.26). 
In fact, I-surfaces are precisely the same as continuously differentiable curves. 

10.11 Definition Suppose Eis an open set in Rn. A differential form of order 
k ~ 1 in E (briefly, a k-form in E) is a function w, symbolically represented by 
the sum 

(34) 

(the indices i1, .•. , ik range independently from 1 to n), which assigns to each 
k-surface <I> in Ea number w(<I>) = Jcp w, according to the rule 

cp D U l, ... , Uk 

where D is the parameter domain of <I>. 
The functions a; 1 ••• ik are assumed to be real and continuous in E. If 

</>1 , ... , <Pn are the components of <I>, the Jacobian in (35) is the one determined 
by the mapping 

(u1, •.. , uk) ► (</>i 1(u), ... , </>;k(u)). 

Note that the right side of (35) is an integral over D, as defined in Defini
tion 10.1 (or Example 10.4) and that (35) is the definition of the symbol J<J> w. 

A k-form w is said to be of class ({J' or ~'' if the functions ai1 ••• ik in (34) 
are all of class ~' or ~''. 

A 0-form in E is defined to be a continuous function in E. 

10.12 Examples 
(a) Let y be a I-surface (a curve of class ~') in R3

, with parameter 
domain [O, 1 ]. 

Write (x, y, z) in place of (x1, x 2 , x 3), and put 

w = x dy + ydx. 



(36) 

INTEGRATION OF DIFFERENTIAL FORMS 255 

Then 
1 

w = [y1(t)y~(t) +Y2(t)y;(t)] dt = Y1(l)y2(l) - Y1(0)y2(0). 
y 0 

Note that in this example J Y w depends only on the initial point y(O) 
and on the end point y(l) of y. In particular, JY w = 0 for every closed 
curve y. (As we shall see later, this is true for every I-form w which is 
exact.) 

Integrals of I-forms are often called line integrals. 
(b) Fix a> 0, b > 0, and define 

y(t) = (a cost, b sin t) (0 ~ t ~ 2n), 

so that y is a closed curve in R2
• (Its range is an ellipse.) Then 

21t 

x dy = ab cos2 t dt = nab, 
y 0 

whereas 
21t 

y dx = - ab sin2 t dt = -nab. 
y 0 

Note that JY x dy is the area of the region bounded by y. This is a 
special case of Green's theorem. 
( c) Let D be the 3-cell defined by 

0 ~ r ~ I, 0 ~ 0 ~ n, 0 ~ <p ~ 2n. 

Define cl>(r, 0, cp) = (x, y, z), where 

Then 

Hence 

x = r sin 0 cos <p 

y = r sin 0 sin <p 

z = r cos 0. 

o(x, y, z) 2 • 

J'1>(r, 0, <p) = o(r, 0, <p) = r Sill 0. 

dx Ady A dz= 
'1> 

4n 
J(J) = -· 

D 3 

Note that cl> maps D onto the closed unit ball of R3
, that the mapping 

is 1-1 in the interior of D (but certain boundary points are identified by 
cl>), and that the integral (36) is equal to the volume of cl>(D). 
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10.13 Elementary properties Let w, w1, w2 be k-forms in E. We write w1 = w2 

if and only if w1(<1>) = w2 (<1>) for every k-surface <I> in E. In particular, w = 0 
means that w(<I>) = 0 for every k-surface <I> in E. If c is a real number, then 
cw is the k-form defined by 

(37) CW= C W, 
cp cp 

and w = w1 + w2 means that 

for every k-surface <I> in E. As a special case of (37), note that -w is defined so 
that 

(39) (-w) = - dw. 
cp cp 

Consider a k-form 

(40) w = a(x) dx. A • · · A dx . 11 lk 

and let w be the k-form obtained by interchanging some pair of subscripts in 
( 40). If (35) and (39) are combined with the fact that a determinant changes 
sign if two of its rows are interchanged, we see that 

(41) 

(42) 

--W= -W. 

As a special case of this, note that the anticommutative relation 

dx- A dx. = -dx- A dx. 
I J J I 

holds for all i and j. In particular, 

(43) dx, A dx. = 0 I I (i= 1, ... , n). 

More generally, let us return to (40), and assume that i, = is for some 
r :I: s. If these two subscripts are interchanged, then w = w, hence w = 0, by 
(41). 

In other words, if w is given by (40), then w = 0 unless the subscripts 
i1 , ••• , ik are all distinct. 

If w is as in (34), the summands with repeated subscripts can therefore 
be omitted without changing w. 

It follows that O is the only k-form in any open subset of Rn, if k > 11. 

The anticommutativity expressed by ( 42) is the reason for the inordinate 
amount of attention that has to be paid to minus signs when studying differenti[tl 
forms. 
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10.14 Basic k-forms If i1, ••• , ik are integers such that 1 ~ i1 < i 2 < · · · 
< ik ~ n, and if/ is the ordered k-tuple {i1, ••• , ik}, then we call / an increasing 
k-index, and we use the brief notation 

(44) 

These forms dx1 are the so-called basic k-forms in Rn. 
It is not hard to verify that there are precisely n!/k!(n - k)! basic k-forms 

in Rn; we shall make no use of this, however. 
Much more important is the fact that every k-form can be represented in 

terms of basic k-forms. To see this, note that every k-tuple{j1, ••• ,jk} of distinct 
integers can be converted to an increasing k-index J by a finite number of inter
changes of pairs; each of these amounts to a multiplication by -1, as we saw 
in Sec. 10.13; hence 

(45) 

where e(j1, ... ,jk) is 1 or -1, depending on the number of interchanges that 
are needed. In fact, it is easy to see that 

(46) 

wheres is as in Definition 9.33. 
For example, 

dx1 A dx 5 A dx3 A dx2 = -dx1 A dx2 A dx3 A dx5 

and 

dx4 A dx2 A dx3 = dx2 A dx3 A dx4 • 

If every k-tuple in (34) is converted to an increasing k-index, then we 
obtain the so-called standard presentation of w: 

(47) w = L b1(x) dx1 . 
I 

The summation in (47) extends over all increasing k-indices I. [Of course, every 
increasing k-index arises from many (from k!, to be precise) k-tuples. Each 
b 1 in (47) may thus be a sum of several of the coefficients that occur in (34).] 

For example, 

x1 dx2 A dx1 - x 2 dx 3 A dx2 + x3 dx2 A dx3 + dx1 A dx2 

is a 2-form in R 3 whose standard presentation is 

(I - x 1) dx 1 A dx2 + (x 2 + x3) dx2 A dx3 • 

The following uniqueness theorem is one of the main reasons for the 
introduction of the standard presentation of a k-form. 
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10.lS Theorem Suppose 

(48) ro = L b1(x) dx1 
I 

is the standard presentation of a k-form ro in an open set E c Rn. If ro = 0 in E, 
then b1(x) = 0 for every increasing k-index I and for every x E E. 

Note that the analogous statement would be false for sums such as (34), 
since, for example, 

(49) 

(50) 

dx 1 A dx 2 + dx 2 A dx 1 = 0. 

Proof Assume, to reach a contradiction, that b J(v) > 0 for some v e E 
and for some increasing k-index J = {j1, ••• ,jk}. Since bJ is continuous, 
there exists h > 0 such that b J(x) > 0 for all x E Rn whose coordinates 
satisfy Ix, - v, I ~ h. Let D be the k-cell in Rk such that u e D if and 
only if I url ~ h for r = 1, ... , k. Define 

k 

<l>(u) = V + L ureir (u ED). 
r= 1 

Then <I> is a k-surface in E, with parameter domain D, and b J(<l>(u)) > 0 
for every u e D. 

We claim that 

ro = bJ(<l>(u)) du. 
cp D 

Since the right side of (50) is positive, it follows that ro(<I>) #- 0. Hence 
(50) gives our contradiction. 

To prove (50), apply (35) to the presentation (48). More specifically, 
compute the Jacobians that occur in (35). By (49), 

o(xi1' ... ' Xjk) = 1. 
O(U1, , , , , Uk) 

For any other increasing k-index / :;f J, the Jacobian is 0, since it is the 
determinant of a matrix with at least one row of zeros. 

10.16 Products of basic k-forms Suppose 

(51) / = {i1, ... 'ip}, J = {j1, ... ,jq} 

where 1 ~ i1 < · · · < iP ~ n and 1 ~j1 < · · · <jq ~ n. The product of the cor
responding basic forms dx1 and dxJ in Rn is a (p + q)-form in Rn, denoted by 
the symbol dx1 A dxJ, and defined by 

(52) dx1 A dxJ = dx, 1 A • • • A dx,p A dxi 1 A • • • A dxiq. 
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If I and J have an element in common, then the discussion in Sec. 10.13 
shows that dx1 A dx1 = 0. 

If I and J have no element in common, let us write [/, J] for the increasing 
(p + q)-index which is obtained by arranging the members of I u Jin increasing 
order. Then dxc1, 11 is a basic (p + q)-form. We claim that 

(53) dx1 /\ dxJ = (-1)11 dxc1, 11 

where a is the number of differences jt - i, that are negative. (The number of 
positive differences is thus pq - a.) 

To prove (53), perform the following operations on the numbers 

(54) • • • • 
11, • •• , z,;J1, ... ,Jq• 

Move i, to the right, step by step, until its right neighbor is larger than ;,. 
The number of steps is the number of subscripts t such that i1 <j,. (Note that 
0 steps are a distinct possibility.) Then do the same for i,_ 1, ••• , i1 • The total 
number of steps taken is ex. The final arrangement reached is [/, J]. Each step, 
when applied to the right side of (52), multiplies dx1 A dxJ by -1. Hence (53) 
holds. 

Note that the right side of (53) is the standard presentation of dx1 A dx1 • 

Next, let K = (k1, ••• , k,) be an increasing ,-index in {1, ... , n}. We shall 
use (53) to prove that 

(55) (dx1 A dx1 ) A dxx = dx1 A (dx1 A dxx), 

If any two of the sets/, J, K have an element in common, then each side 
of (55) is 0, hence they are equal. 

So let us assume that /, J, K are pairwise disjoint. Let [/, J, K] denote 
the increasing (p + q + r )-index obtained from their union. Associate p with 
the ordered pair (J, K) and y with the ordered pair(/, K) in the way that a was 
associated with (/, J) in (53). The left side of (55) is then 

(-1)11 dxc1, JJ A dxx = (-1)11
( - I)P+y dxc1, 1 , KJ 

by two applications of (53), and the right side of (55) is 

(- I)P dx1 A dxcJ, Kl= ( - l)P( - l)11 +y dxc1, 1 , KJ. 

Hence ( 55) is correct. 

10.17 Multiplication Suppose OJ and l are p- and q-forms, respectively, in 
some open set E c Rn, with standard presentations 

(56) l = L cJ(x) dx1 
J 

where / and J range over all increasing p-indices and over all increasing q-indices 
taken from the set {l, ... , n}. 
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Their product, denoted by the symbol w A l, is defined to be 

(57) w A l = L b1(x)c1(x) dx1 A dx1 • 
1,J 

In this sum,/ and J range independently over their possible values, and dx1 A dx1 
is as in Sec. 10.16. Thus w A l is a (p + q)-form in E. 

It is quite easy to see (we leave the details as an exercise) that the distribu
tive laws 

and 

w A (l1 + l 2) = (w A l 1) + (w A l 2) 

hold, with respect to the addition defined in Sec. 10.13. If these distributive 
laws are combined with (55), we obtain the associative law 

(58) (w A l) A a= w A (,1. A a) 

for arbitrary forms w, l, a in E. 
In this discussion it was tacitly assumed that p ~ l and q ~ 1. The product 

of a 0-formfwith the p-form w given by (56) is simply defined to be the p-form 

fw = wf = Lf(x)br(x) dx1• 
I 

It is customary to writefw, rather than/ Aw, when/is a 0-form. 

10.18 Differentiation We shall now define a differentiation operator d which 
associates a (k + 1)-form dw to each k-form w of class CC' in some open set 
Ee Rn. 

A 0-form of class ({J' in Eis just a real function f e ({J'(E), and we define 
n 

(59) df = L (D,f)(x) dx,. 
i= 1 

If w = Ib 1(x) dx 1 is the standard presentation of a k-form w, and b 1 e ({J'(E) 
for each increasing k-index I, then we define 

(60) dw = L (db 1) A dx1 . 
I 

10.19 Example Suppose Eis open in Rn, f e ({J'(E), and y is a continuously 
differentiable curve in E, with domain [O, l]. By (59) and (35), 

l n 

(61) df = L (D,f)(y(t ))y,(t) dt. 
y O ,_ 1 
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By the chain rule, the last integrand is (f O y)'(t). Hence 

(62) df = f(y(l)) - f(y(O)), 
y 

and we see that J Y df is the same for all y with the same initial point and the same 
end point, as in (a) of Example 10.12. 

Comparison with Example 10.12(b) shows therefore that the 1-form x dy 
is not the derivative of any 0-formf This could also be deduced from part (b) 
of the following theorem, since 

d(x dy) = dx A dy # 0. 

10.20 Theorem 

(63) 

(64) 

(a) If w and A are k- and m-forms, respectively, of class ({J' in E, then 

d(w A A)= (dw) A A+ ( - l)k w A dA.. 

(b) If w is of class~'' in E, then d 2w = 0. 

Here d 2w means, of course, d(dw). 

Proof Because of (57) and (60), (a) follows if (63) is proved for the 
special case 

w =f dx 1, 

where f, g e ({J'(E), dx 1 is a basic k-form, and dxJ is a basic m-form. [If 
k or m or both are 0, simply omit dx 1 or dxJ in (64); the proof that follows 
is unaffected by this.] Then 

w A A = fg dx 1 A dx J. 

Let us assume that I and J have no element in common. [In the other 
case each of the three terms in (63) is O.] Then, using (53), 

d(w A A)= d(fg dx1 A dxJ) =( - l)a. d(fg dxc1, JJ). 

By (59), d(fg) = f dg + g df Hence (60) gives 

d(w A A)= (- l)a. (f dg + g df) A dxc1, Jl 

= (gdf + f dg) A dx 1 A dxJ. 

Since dg is a 1-form and dx 1 is a k-form, we have 

dg A dx 1 = (-l)kdx1 A dg, 
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by ( 42). Hence 

d(w A A) = (df A dx 1) A (g dx1) + ( -1)1(/ dx 1) A (dg A dx1) 

= (dw) Al+(- l)kw A dl, 

which proves (a). 
Note that the associative law (58) was used freely. 
Let us prove ( b) first for a 0-f orm f e CC'' : 

n 

d2f = d L (D1f)(x) dx1 
J=l 

n 

= L d(D1f) A dx1 
J= 1 

n 

= L (D 11f)(x) dx1 A dx1 • 
i, }= 1 

Since D11f = D11f (Theorem 9.41) and dx1 A dxJ = -dx1 A dxi, we see 
that d2f = 0. 

If ro = f dx 1 , as in (64), then dw = (df) A dx 1 • By (60), d(dx 1) = 0. 
Hence ( 63) shows that 

10.21 Change of variables Suppose E is an open set in R", Tis a CC' -mapping 
of E into an open set V c R"', and ro is a k-form in V, whose standard presenta
tion is 

(65) 

(We use y for points of V, x for points of E.) 
Let t 1, ••• , tm be the components of T: If 

Y = (Y1, · · ·, Ym) = T(x) 

then y 1 = t1(x). As in (59), 
n 

(66) dt1 = L (D1 t1)(x) dx1 (1 5. i 5. m). 
J= 1 

Thus each dt1 is a I-form in E. 
The mapping T transforms w into a k-form wT in E, whose definition is 

(67) wT = Lb i(T(x)) dt1, A • • • A dt1". 
I 

In each summand of (67), I= {i1, ... , ik} is an increasing k-index. 
Our next theorem shows that addition, multiplication, and differentiation 

off orms are defined in such a way that they commute with changes of variables. 



INTEGRATION OF DIFFERENTIAL FORMS 263 

10.22 Theorem With E and T as in Sec. 10.21, let wand A be k- and m-forms 
in V, respectively. Then 

(a) (w + A)T = wT + AT if k = m; 
(b) (w A A)T = wT A AT; 
(c) d(wT) = (dw)T if w is of class CC' and Tis of class CC''. 

Proof Part (a) follows immediately from the definitions. Part (b) is 
almost as obvious, once we realize that 

(68) (dyi1 A ••• A dyi,.)T = dti1 A .•. A dti,. 

(69) 

(70) 

regardless of whether {i1, ••• , ir} is increasing or not; (68) holds because 
the same number of minus signs are needed on each side of (68) to produce 
increasing rearrangements. 

We turn to the proof of (c). If f is a 0-form of class ri' in V, then 

fT(x) = f(T(x)), df = L (Dif)(y) dyi. 
i 

By the chain rule, it follows that 

d(fT) = L (DifT)(x) dxi 
• 

J 

= LL (Dif)(T(x))(Di ti)(x) dxi 
J i 

= L (Dif)(T(x)) dti 
• 
J 

= (df)T-

If dy 1 = dyi 1 A · · · A dyik, then (dy 1)T = dti 1 A · · · A dtik, and Theorem 
10.20 shows that 

d((dy 1)T) = 0. 

(This is where the assumption Te CC'' is used.) 
Assume now that w = f dy 1 • Then 

WT= fT(x) (dy r)T 

and the preceding calculations lead to 

d(wT) = d(fT) A (dy 1)T = (df)T A (dy 1)T 

= ((df) A dy r)T = (dw)T. 

The first equality holds by (63) and (70), the second by (69), the third by 
pa.rt (b), and the last by the definition of dw. 

The general case of (c) follows from the special case just proved, if 
we apply (a). This completes the proof. 
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Our next objective is Theorem 10.25. This will follow directly from two 
other important transformation properties of differential forms, which we state 
first. 

10.23 Theorem Suppose T is a CC' -mapping of an open set E c Rn into an open 
set V c R"', S is a CC' -mapping of V into an open set W c RP, and w is a k-form 
in W, so that Ws is a k-form in V and both (ros)T and WsT are k-forms in E, where 
ST is defined by (ST)(x) = S(T (x)). Then 

(71) (ros)T = WsT. 

Proof If ro and J. are forms in W, Theorem 10.22 shows that 

((ro A J.)s)T = (ros A As)T = (ros)T A (J.s)T 

and 

(ro A A)sT = WsT A AsT. 

Thus if (71) holds for ro and for J., it follows that (71) also holds for ro Al. 
Since every form can be built up from 0-forms and I-forms by addition 
and multiplication, and since (71) is trivial for 0-forms, it is enough to 
prove (71) in the case ro = dzq, q = 1, ... , p. (We denote the points of 
E, V, W by x, y, z, respectively.) 

Let t1 , •.• , tm be the components of T, let s1, ... , sP be the compo
nents of S, and let r1, ••. , r P be the components of ST. If ro = dzq, then 

Ws = dsq = L (D1sq)(y) dy1, 
• 

J 

so that the chain rule implies 

(ros)T = L (D1sq)(T(x)) dt1 
J 

= L (D1sq)(T(x)) L (Di t1)(x) dx, 
J i 

= L (Dirq)(x) dxi = drq = WsT. 
i 

10.24 Theorem Suppose w is a k-form in an open set E c Rn, <I> is a k-surface 
in E, with parameter domain D c Rk, and Ll is the k-surface in Rk, with parameter 
domain D, defined by Ll(u) = u(u e D). Then 

CO = W111. 
II> I!,. 

Proof We need only consider the case 

ro = a(x) dxi 1 A · · · A dx,k. 
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If </>1, ••• , <Pn are the components of <I>, then 

ro111 = a(<l>(u)) d<f, 11 A • • • A d<f,ik. 

The theorem will follow if we can show that 

d<f,i 1 A • • • A d<f, 1k = J(u) du1 A • • • A duk, 

where 

since (72) implies 

w = a(<l>(u))J(u) du 
Ill D 

-- a(<l>(u))J(u) du1 A • • · A duk = w 111 • 
A A 

Let [A] be the k by k matrix with entries 

(p,q= I, ... ,k). 

Then 

d</>ip = L a.(p, q) duq 
q 

so that 

d</>, 1 A • • • A d<f, 1k = L a.(I, q1) • • • a.(k, qk) duq 1 A • • • A duqk. 

In this last sum, q1, ••• , qk range independently over 1, ... , k. The anti
commutative relation ( 42) implies that 

duq 1 A • • • A duqk = s(q1, ••• , qk) du1 A • • • A duk, 

wheres is as in Definition 9.33; applying this definition, we see that 

d<f,i 1 A • • • A d</>,k = det [A] du1 A • • • A duk ; 

and since J(u) = det [A], (72) is proved. 

The final result of this section combines the two preceding theorems. 

10.25 Theorem Suppose T is a CC' -mapping of an open set E c Rn into an open 
set V c Rm, <I> is a k-surface in E, and w is a k-form in V. 

Then 
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Proof Let D be the parameter domain of <I> (hence also of T<I>) and 
define Ll as in Theorem I 0.24. 

Then 

(J) = (J)T(I) = (wT)(I) = WT• 
T(I) 6 6 (I) 

The first of these equalities is Theorem 10.24, applied to T<I> in place of <I>. 
The second follows from Theorem 10.23. The third is Theorem 10.24, 
with roT in place of ro. 

SIMPLEXES AND CHAINS 

10.26 Affine simplexes A mapping f that carries a vector space X into a 
vector space Y is said to be affine if f - f(O) is linear. In other words, the require
ment is that 

(73) f(x) = f(O) + Ax 

for some A e L(X, Y). 
An affine mapping of Rk into Rn is thus determined if we know f(O) and 

f(ei) for I :::;; i:::;; k; as usual, {e1, ... , ek} is the standard basis of Rk. 
We define the standard simplex Qk to be the set of all u e Rk of the form 

(74) 
k 

u = '°' oc-eLi I I 
i= 1 

such that °'i ~ 0 for i = I, ... , k and I:oci:::;; 1. 
Assume now that Po, p1, ••• , Pk are points of Rn. The oriented affine 

k-simplex 

(75) <1 = [Po, P1, • • •, Pk] 

is defined to be the k-surf ace in Rn with parameter domain Qk which is given 
by the affine mapping 

k 

(76) <1(oc1e1 + · · · + °'k ek) = Po + L oci(P1 - Po), 

Note that <1 is characterized by 

(77) 

and that 

(78) 

<1(0) =Po, 

<1(u) =Po+ Au 

1= 1 

(for I :::;; i :::;; k), 

where A e L(Rk, Rn) and Ae1 = p1 - Po for 1 :::;; i :::;; k. 
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We call <1 oriented to emphasize that the ordering of the vertices p0 , •.. , Pk 
is taken into account. If 

(79) 

where {i0 , i1, .•. , ik} is a permutation of the ordered set {O, 1, ... , k}, we adopt 
the notation 

(80) 

wheres is the function defined in Definition 9.33. Thus ii= ±<1, depending on 
whether s = I or s = - I. Strictly speaking, having adopted (75) and (76) as 
the definition of <1, we should not write ii= <1 unless i0 = 0, ... , ik = k, even 
if s(i0 , ••• , ik) = I; what we have here is an equivalence relation, not an equality. 
However, for our purposes the notation is justified by Theorem 10.27. 

If ii= 8<1 (using the above convention) and if 8 = 1, we say that ii and <1 

have the same orientation; if 8 = -1, ii and <1 are said to have opposite orienta
tions. Note that we have not defined what we mean by the ''orientation of a 
simplex.'' What we have defined is a relation between pairs of simplexes having 
the same set of vertices, the relation being that of ''having the same orientation.'' 

There is, however, one situation where the orientation of a simplex can 
be defined in a natural way. This happens when n = k and when the vectors 
Pi - Po (1 ~ i ~ k) are independent. In that case, the linear transformation A 
that appears in (78) is invertible, and its determinant (which is the same as the 
Jacobian of <1) is not 0. Then <1 is said to be positively (or negatively) oriented if 
det A is positive (or negative). In particular, the simplex [O, e1, ... , ek] in Rk, 
given by the identity mapping, has positive orientation. 

So far we have assumed that k ~ 1. An oriented 0-simplex is defined to 
be a point with a sign attached. We write <1 = +p0 or <1 = - Po. If <1 = 8p0 

( 8 = ± 1) and if f is a 0-f orm (i.e., a real function), we define 

f = 8/(Po), 
(I 

10.27 Theorem If <1 is an oriented rectilinear k-simplex in an open set E c: Rn 
and if ii = 8<1 then 

(81) w=8 w 
(I 

for every k-form w in E. 

Proof For k = 0, (81) follows from the preceding definition. So we 
assume k ~ 1 and assume that u is given by (75). 
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Suppose 1 ~ j ~ k, and suppose a is obtained from <1 by inter
changing Po and p1 . Then e = -1, and 

a(u) = p1 + Bu (u e Qk), 

where B is the linear mapping of Rk into Rn defined by Be1 = Po - p1 , 

Bei = Pi - p1 if i =I=}. If we write Aei = xi (1 ~ i ~ k), where A is given 
by (78), the column vectors of B (that is, the vectors Bei) are 

If we subtract the jth column from each of the others, none of the deter
minants in (35) are affected, and we obtain columns x1, ... , x1_ 1, -x1 , 

x1+1 , ... , xk. These differ from those of A only in the sign of the }th 
column. Hence (81) holds for this case. 

Suppose next that O < i <j ~ k and that a is obtained from <1 by 
interchanging Pi and p1 . Then a(u) =Po+ Cu, where C has the same 
columns as A, except that the ith and jth columns have been inter
changed. This again implies that (81) holds, since e = -1. 

The general case follows, since every permutation of {O, 1, ... , k} is 
a composition of the special cases we have just dealt with. 

10.28 Affine chains An affine k-chain r in an open set E c: Rn is a collection 
of finitely many oriented affine k-simplexes <11, ••• , <1 r in E. These need not be 
distinct; a simplex may thus occur in r with a certain multiplicity. 

If r is as above, and if w is a k-form in E, we define 

r 

(82) W= L w. 
r i=l 111 

We may view a k-surface <I> in E as a function whose domain is the collec
tion of all k-forms in E and which assigns the number J111 w to w. Since real
valued functions can be added (as in Definition 4.3), this suggests the use of the 
notation 

(83) r = 0'1 + . • • + O'r 

or, more compactly, 

(84) 

to state the fact that (82) holds for every k-form w in E. 
To avoid misunderstanding, we point out explicitly that the notations 

introduced by (83) and (80) have to be handled with care. The point is that 
every oriented affine k-simplex a in Rn is a function in two ways, with different 
domains and different ranges, and that therefore two entirely different operations 
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of addition are possible. Originally, a was defined as an Rn-valued function 
with domain Qk; accordingly, a 1 + a2 could be interpreted to be the function 
<1 that assigns the vector <11(u) + <12(u) to every u e Qk; note that <1 is then again 
an oriented affine k-simplex in Rn! This is not what is meant by (83). 

For example, if <12 = -<11 as in (80) (that is to say, if <11 and <12 have the 
same set of vertices but are oppositely oriented) and if r = u1 + <12 , then 
Jr w = 0 for all w, and we may express this by writing r = 0 or <11 + <12 = 0. 
This does not mean that <1 1(u) + <1 2(u) is the null vector of Rn. 

10.29 Boundaries For k ~ 1, the boundary of the oriented affine k-simplex 

<1 = [Po, P1, ···,Pk] 

is defined to be the affine (k - 1)-chain 

k 

(85) 0<1 = L (- l)i[Po, • • •, Pj-1, Pi+t, •••,Pk]. 
j=O 

For example, if <1 = [p0 , p1, p2 ], then 

0<1 = [P1, P2l - [Po, P2l + [Po, P1l = [Po, P1l + [P1, P2l + [P2, Pol, 

which coincides with the usual notion of the oriented boundary of a triangle. 
For 1 sj s k, observe that the simplex <1i = [p0 , ... , Pi- 1 , Pi+ 1, ... , Pk] 

which occurs in (85) has Qk- l as its parameter domain and that it is defined by 

(86) <1i(u)=p0 +Bu (ueQk- 1
), 

where Bis the linear mapping from Rk-l to Rn determined by 

Bei = Pi - Po (if 1 s i sj- 1), 

Bei = Pi+1 - Po (if J s is k - 1). 

The simplex 

<10 = [P1, P2, ··,,Pk], 

which also occurs in (85), is given by the mapping 

<1o(u) = P1 + Bu, 

where Bei = Pi+l - p1 for 1 sis k - I. 

10.30 Differentiable simplexes and chains Let T be a ~''-mapping of an open 
set E c Rn into an open set V c Rm; T need not be one-to-one. If <1 is an oriented 
affine k-simplex in E, then the composite mapping <I> = T O <1 (which we shall 
sometimes write in the simpler form T<1) is a k-surface in V, with parameter 
domain Qk. We call <I> an oriented k-simplex of class~''. 
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A finite collection q, of oriented k-simplexes <1>1, ... , <l>r of class ri'' in V 
is called a k-chain of class ri'' in V. If w is a k-form in V, we define 

r 

(87) w=I: w 
'I' i= 1 q,; 

and use the corresponding notation q, = l:<I> i • 

If r = l:ai is an affine chain and if <l>i = T O ai, we also write q, = T O r, 
or 

(88) 

The boundary o<I> of the oriented k-simplex <I> = T O a is defined to be the 
(k - 1) chain 

(89) a<1> = T(o<1). 

In justification of (89), observe that if T is affine, then <I> = To <1 is an 
oriented affine k-simplex, in which case (89) is not a matter of definition, but is 
seen to be a consequence of (85). Thus (89) generalizes this special case. 

It is immediate that o<I> is of class ri'' if this is true of <I>. 
Finally, we define the boundary aq, ot· the k-chain q, = l:<I> i to be the 

(k - 1) chain 

(90) aq, = I: a<1>i. 

10.31 Positively oriented boundaries So far we have associated boundaries to 
chains, not to subsets of Rn. This notion of boundary is exactly the one that is 
most suitable for the statement and proof of Stokes' theorem. However, in 
applications, especially in R2 or R 3

, it is customary and convenient to talk 
about ''oriented boundaries'' of certain sets as well. We shall now describe 
this briefly. 

Let Qn be the standard simplex in Rn, let <10 be the identity mapping with 
domain Qn. As we saw in Sec. 10.26, <10 may be regarded as a positively oriented 
n-simplex in Rn. Its boundary 0<10 is an affine (n - 1)-chain. This chain is 
called the positively oriented boundary of the set Qn. 

For example, the positively oriented boundary of Q3 is 

[e1, e2 , e3 ] - [O, e2 , e3 ] + [O, e1, e3 ] - [O, e1, e2 ]. 

Now let T be a 1-1 mappi11g of Qn into Rn, of class ri'', whose Jacobian is 
positive (at least in the interior of Qn). Let E = T(Qn). By the inverse function 
theorem, E is the closure of an open subset of Rn. We define the positively 
oriented boundary of the set E to be the (n - 1 )-chain 

ar = T(o<10), 

and we may denote this (n - 1)-chain by oE. 
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An obvious question occurs here: If E = T1(Q") = T2(Q"), and if both 
T1 and T2 have positive Jacobians, is it true that oT1 = oT2 ? That is to say, 
does the equality 

hold for every (n - 1)-form w? The answer is yes, but we shall omit the proof. 
(To see an example, compare the end of this section with Exercise 17.) 

One can go further. Let 

.Q = E1 u · · · u Er, 

where Ei = Ti(Q"), each Ti has the properties that Thad above, and the interiors 
of the sets Ei are pairwise disjoint. Then the (n - 1)-chain 

oT1 + · · · + oTr = o!l 

is called the positively oriented boundary of n. 
For example, the unit square 12 in R2 is the union of e11(Q2

) and e12(Q 2
), 

where 

Both e11 and e12 have Jacobian 1 > 0. Since 

we have 

oe11 = [e1, e2 ] - [0, e2 ] + [O, e1], 

oe12 = [e2 , e1] - [e1 + e2 , e1] + [e1 + e2 , e2 ]; 

The sum of these two boundaries is 

o/ 2 = [O, e1] + [e1, e1 + e2] + [e1 + e2, e2] + [e2, O], 

the positively oriented boundary of 12
• Note that [e1, e2 ] canceled [e2 , e1 ]. 

If <I> is a 2-surface in Rm, with parameter domain / 2
, then <I> (regarded as 

a function on 2-forms) is the same as the 2-chain 

<I> o 0'1 + <I> o 0'2. 

Thus 

o<I> = o(<I> 0 C11) + 8(<1> 0 0'2) 

= <l>(8e11) + <l>(oe12) = <1>(812
). 

In other words, if the parameter domain of <I> is the square 12
, we need 

not refer back to the simplex Q2
, but can obtain o<I> directly from o/2

• 

Other examples may be found in Exercises 17 to 19. 
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10.32 Example For O ~ u ~ n, 0 ~ v ~ 2n, define 

~(u, v) = (sin u cos v, sin u sin v, cos u). 

Then ~ is a 2-surface in R 3
, whose parameter domain is a rectangle D c R2

, 

and whose range is tl1e unit sphere in R3
• I ts boundary is 

where 

a~ = ~(oD) = 1'1 + Y2 + '}'3 + '}'4 

'}'1 (u) = ~(u, 0) = (sin u, 0, cos u), 

'}' 2(v) = ~(n, v) = (0, 0, -1), 

y3(u) = ~(n - u, 2n) = (sin u, 0, -cos u), 

y4(v) = ~(O, 2n - v) = (O, 0, 1), 

• 

with [O, n] and [O, 2n] as parameter intervals for u and v, respectively. 
Since y2 and y4 are constant, their derivatives are 0, hence the integral of 

any I-form over y2 or y4 is 0. [See Example l.12(a).] 
Since y3(u) = y1(n - u), direct application of (35) shows that 

W=- W 
)I 3 )I I 

for every I-form w. Thus Jar w = 0, and we conclude that a~= 0. 
(In geographic terminology, 8~ starts at the north pole N, runs to the 

south pole S along a meridia11, pauses at S, returns to N along the same meridian, 
and finally pauses at N. The two passages along the meridian are in opposite 
directions. The corresponding two line integrals the ref ore cancel each other. 
In Exercise 32 there is also one curve which occurs twice in the boundary, but 
without cancellation.) 

STOKES' THEOREM 

10.33 Theorem If 'P is a k-chain of class ~ 11 in an open set V c Rm and if w 
is a (k - 1 )-form of class ~' in V, then 

(91) dw= w. 
'I' o'l' 

The case k = m = I is nothing but the fundamental theorem of calculus 
(with an additional differentiability assumption). The case k = m = 2 is Green's 
theorem, and k = m = 3 gives the so-called ''divergence theorem'' of Gauss. 
The case k = 2, m = 3 is the one originally discovered by Stokes. (Spivak's 
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book describes some of the historical background.) These special cases will be 
discussed further at the end of the present chapter. 

(92) 

(93) 

(94) 

(95) 

(96) 

Proof It is enough to prove that 

dOJ = OJ 

for every oriented k-simplex <I> of class ~'' in V. For if (92) is proved and 
if 'P = l:<1> 1, then (87) and (89) imply (91). 

Fix such a <I> and put 

u = [O, e1, ... , ek]. 

Thus u is the oriented affine k-simplex with parameter domain Qk which 
is defined by the identity mapping. Since <I> is also defined on Qk (see 
Definition 10.30) and <I> e ~'', there is an open set E c Rk which contains 
Qk, and there is a ~''-mapping T of E into V such that <I>= T O u. By 
Theorems 10.25 and 10.22(c), the left side of (92) is equal to 

Ta t1 t1 

Another application of Theorem 10.25 shows, by (89), that the right side 
of (92) is 

OJ = OJ = OJT . 
o(Ta) T(oa) oa 

Since OJT is a (k - 1)-form in E, we see that in order to prove (92) 
we merely have to show that 

d).. = ;,_ 
t1 0(1 

for the special simplex (93) and for every (k - 1 )-form ).. of class ~' in E. 

If k = I, the definition of an oriented 0-simplex shows that (94) 
merely asserts that 

1 

f'(u) du= f(l) - /(0) 
0 

for every continuously differentiable function f on [O, 1 ], which is true 
by the fundamental theorem of calculus. 

From now on we assume that k > I, fix an integer r (1 ~ r ~ k), 
and choose/ e ~'(£). It is then enough to prove (94) for the case 

/4=/(x)dx1 /\ •·• /\ dx,_ 1 I\ dx,+ 1 I\··· I\ dxk 

since every (k - 1)-form is a sum of these special ones, for r = I, ... , k. 
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(97) 

(98) 

(99) 

(100) 

(101) 

(102) 

By (85), the boundary of the simplex (93) is 

where 

k 

8u=[e1, ••• ,ek]+ I(-1)1-rt 
i= 1 

for i = 1, ... , k. Put 

Note that -r0 is obtained from [e1 , ... , ek] by r - 1 successive interchanges 
of e, and its left neighbors. Thus 

k 

8u=(-1)'- 1to+ I(-1)1-ri. 
i= 1 

Each -r I has Qk- 1 as parameter domain. 
If x = -r0(u) and u e Qk-i, then 

ui 

xi= l-(u1 +···+uk-1) 
(1 :5.} < r), 
(j = r), 

ui-1 (r <} :5. k). 

If 1 :5. i :5. k, u e Qk- J, and x = -r 1(u), then 

ui 
X· = 0 J 

(1 :$.} < i), 
u = i), 
(i <} :5. k). 

For O ~ i ~ k, let J1 be the Jacobian of the mapping 

induced by -r 1• When i = 0 and when i = r, (98) and (99) show that (100) 
is the identity mapping. Thus J0 = 1, J, = 1. For other i, the fact that 
xi = 0 in (99) shows that J1 has a row of zeros, hence J1 = 0. Thus 

(i ¥= 0, i ¥= r), 

by (35) and (96). Consequently, (97) gives 

l = ( - 1 )' - 1 l + ( - 1 )' l 
0(1 ~o ~r 

= ( - l)r-1 [/( -r0(u)) - /(-r,(u))] du. 



(103) 
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On the other hand, 

so that 

d). = (D,f)(x)dx, I\ dx1 I\ · · • I\ dx,_ 1 I\ dx,+ 1 I\ · · • I\ dxk 

= ( -1)'- 1(D,f)(x) dx1 I\ • · • I\ dxk 

d). = ( -1)'- 1 (D,f)(x) dx. 
a Qk 

We evaluate (103) by first integrating with respect to x,, over the interval 

[O, 1 - (x1 + · · · + x,_ 1 + x,+ 1 + · · · + xk)], 

put (x1, •.. , x,_ 1, x,+ 1, ••• , xk) = (u1, •.• , uk_ 1), and see with the aid of 
(98) that the integral over Qk in (103) is equal to the integral over Qk- i 

in (102). Thus (94) holds, and the proof is complete. 

CLOSED FORMS AND EXACT FORMS 

10.34 Definition Let w beak-form in an open set E c Rn. If there is a (k - 1)
f orm ). in E such that w = d)., then w is said to be exact in E. 

If w is of class ~, and dw = 0, then w is said to be closed. 
Theorem 10.20(b) shows that every exact form of class ~, is closed. 
In certain sets E, for example in convex ones, the converse is true; this 

is the content of Theorem 10.39 (usually known as Poincare's lemma) and 
Theorem 10.40. However, Examples 10.36 and 10.37 will exhibit closed forms 
that are not exact. 

10.35 Remarks 

(104) 

(105) 

(a) Whether a given k-form w is or is not closed can be verified by 
simply differentiating the coefficients in the standard presentation of w. 
For example, a I-form 

n 

w = Lfi(x) dxi, 
i= 1 

with fie~'(£) for some open set E c Rn, is closed if and only if the 
equations 

hold for all i, j in {I, ... , n} and for all x e E. 



276 PRINCIPLES OF MATHEMATICAL ANALYSIS 

Note that (105) is a ''pointwise'' condition,; it does not involve any 
global properties that depend on the shape of E. 

On the other hand, to show that ro is exact in E, one has to prove 
the existence of a form l, defined in E, such that dl = ro. This amounts 
to solving a system of partial differential equations, not just locally, but 
in all of E. For example, to show that (104) is exact in a set E, one has 
to find a function (or 0-form) g e ct'(E) such that 

(106) (D1g)(x) = f 1(x) (x e E, 1 ~ i ~ n). 

(107) 

(108) 

(109) 

Of course, (105) is a necessary condition for the solvability of (106). 

(b) Let robe an exact k-form in E. Then there is a (k - 1)-form A in E 
with dl = ro, and Stokes' theorem asserts that 

ro = dl = l 
'I' 'I' 

for every k-chain 'P of class ct'' in E. 
If 'P1 and 'P2 are such chains, and if they have the same boundaries, 

it follows that 

In particular, the integral of an exact k-f orm in E is O over every 
k-chain in E whose boundary is 0. 

As an important special case of this, note that integrals of exact 
I-forms in E are O over closed (differentiable) curves in E. 

(c) Let ro be a closed k-form in E. Then dro = 0, and Stokes' theorem 
asserts that 

ro = dro = 0 
'I' 

for every (k + 1)-chain 'P of class ct'' in E. 
In other words, integrals of closed k-forms in E are O over k-chains 

that are boundaries of (k + 1 )-chains in E. 

(d) Let 'P be a (k + 1)-chain in E and let A be a (k - 1)-form in E, both 
of class ct''. Since d2 A= 0, two applications of Stokes' theorem show that 

oo'I' o'I' 'I' 

We conclude that 82 'P = 0. In other words, the boundary of a 
boundary is 0. 

See Exercise 16 for a more direct proof of this. 
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I-form 

(110) 
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Let E = R2 
- {O}, the plane with the origin removed. The 

x dy-y dx 
11 = x2 + y2 

is closed in R2 - {O}. This is easily verified by differentiation. Fix r > 0, and 
define 

(111) y(t) = (r cos t, r sin t) (0 ~ t ~ 2n). 

Then y is a curve (an ''oriented I-simplex'') in R2 - {O}. Since y(O) = y(2n), 
we have 

(112) ay = o. 
Direct computation shows that 

(113) 17 = 2n =I= 0. 
y 

The discussion in Remarks 10.35(b) and (c) shows that we can draw two 
conclusions from (113): 

First, 17 is not exact in R 2 - {O}, for otherwise (112) would force the integral 
(113) to be 0. 

Secondly, y is not the boundary of any 2-chain in R2 - {O} ( of class ~''), 
for otherwise the fact that 17 is closed would force the integral (113) to be 0. 

10.37 Example Let E = R3 
- {O}, 3-space with the origin removed. Define 

(114) C = x dy " dz + y dz I\ dx + z dx I\ dy 
(x2 + y2 + z2)3'2 

where we have written (x, y, z) in place of (x1, x 2 , x3). Differentiation shows 
that dC = 0, so that C is a closed 2-form in R3 

- {O}. 
Let :I: be the 2-chain in R3 

- {O} that was constructed in Example 10.32; 
recall that :I: is a parametrization of the unit sphere in R3

• Using the rectangle 
D of Example 10.32 as parameter domain, it is easy to compute that 

(115) C = sin u du dv = 4n =I= 0. 
D 

As in the preceding example, we can now conclude that C is not exact in 
R 3 

- {O} (since o:I: = 0, as was shown in Example 10.32) and that the sphere :I: 
is not the boundary of any 3-chain in R 3 

- {O} ( of class ~''), although 81: = O. 
The following result will be used in the proof of Theorem 10.39. 



278 PRINCIPLES OF MATHEMATICAL ANALYSIS 

10.38 Theorem Suppose Eis a convex open set in Rn,f e ~'(E),p is an integer, 
1 5: p 5: n, and 

(116) (p <j 5: n, XE£). 

Then there exists an Fe ~'(£) such that 

(117) (DpF)(x) =/(x), (DiF)(x) = 0 (p < j 5: n, X E £). 

Proof Write x = (x', xp, x''), where 

X
1 = (X1, ... , Xp-1), X

11 = (Xp+t, ... , Xn). 

(When p = 1, x' is absent; when p = n, x'' is absent.) Let V be the 
set of all (x', xp) e RP such that (x', xP, x'') e £ for some x''. Being a 
projection of E, Vis a convex open set in RP. Since Eis convex and (116) 
holds, f (x) does not depend on x''. Hence there is a function <p, with 
domain V, such that 

/(x) = <p(x', xp) 
for all x e £. 

If p = 1, V is a segment in R1 (possibly unbounded). Pick c e V 
and define 

x1 

F(x) = <p(t) dt (XE£). 
C 

If p > 1, let V be the set of all x' e Rp-t such that (x', xp) e V for 
some x P. Then V is a convex open set in RP- 1, and there is a function 
oc e ~'(U) such that (x', oc(x')) e V for every x' e V; in other words, the 
graph of oc lies in V (Exercise 29). Define 

Xp 

F(x) = <p(x', t) dt (XE£). 
ix(x') 

In either case, F satisfies (117). 

(Note: Recall the usual convention that f! means - f: if b < a.) 

10.39 Theorem If E c Rn is convex and open, if k ~ 1, if w is a k-form of 
class~' in E, and if dw = 0, then there is a (k - 1)-form A in E such that w = d).. 

(118) 

Briefly, closed forms are exact in convex sets. 

Proof For p = 1, ... , n, let YP denote the set of all k-forms w, of class 
~' in £, whose standard presentation 

w = Ifr<_x) dx 1 
I 

does not involve dx p+ 1, ••• , dxn. In other words, I c {l, ... , p} if/ /._x) #- 0 
for some x e £. 



(119) 

(120) 

(121) 

(122) 

(123) 
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We shall proceed by induction on p. 
Assume first that roe Y1• Then ro =/(x) dx1• Since dro = 0, 

(D1f)(x) = 0 for 1 <j Sn, x e E. By Theorem 10.38 there is an Fe <I'(£) 
such that D1F=/and D1F= 0 for 1 <jS n. Thus 

dF = (D1F)(x) dx1 = /(x) dx1 = ro. 

Now we take p > 1 and make the following induction hypothesis: 
E'very closed k-form that belongs to Yp-l is exact in E. 

Choose roe YP so that dro = 0. By (118), 

n 

L L (D1f I)(x) dx1 A dx I= dw = 0. 
I J= 1 

Consider a fixed j, with p <j s n. Each / that occurs in (118) lies in 
{l, ... , p}. If 11, / 2 are two of these k-indices, and if / 1 ::/= 12 , then the 
(k + !)-indices (/1,j), (/2 ,j) are distinct. Thus there is no cancellation, 
and we conclude from (119) that every coefficient in (118) satisfies 

(xeE,p <jSn). 

We now gather those terms in (118) that contain dxP and rewrite ro 
in the form 

ro = oc + Lf I(x) dx 10 A dxP, 
Io 

where ex e Yp-t, each / 0 is an increasing (k - 1)-index in {l, ... , p - l}, 
and / = (/0 , p). By (120), Theorem 10.38 furnishes functions F 1 e <i'(E) 
such that 

(p <j Sn). 

Put 

and define y = ro - ( - l)k- t dp. Since pis a (k - 1)-form, it follows that 

p 

Y = ro - I I (D1F1)(x) dx 10 A dx1 
lo J= 1 

p-1 

= oc - I I (D1F1)(x) dx 10 A dx1 , 
Io J= 1 

which is clearly in Yp-l• Since dro = 0 and d 2P = 0, we have dy = 0. 
Our induction hypothesis shows the ref ore that y = dµ for some 
(k - 1)-form µ in E. If A.=µ+ (-I)k-tp, we conclude that ro = dA.. 

By induction, this completes the proof. 



280 PRINCIPLES OF MATHEMATICAL ANALYSIS 

10.40 Theorem Fix k, 1 ~ k ~ n. Let E c Rn be an open set in which every 
closed k-form is exact. Let T be a 1-1 CC''-mapping of E onto an open set V c Rn 
whose inverse S is also of class CC''. 

Then every closed k-form in Vis exact in V. 

Note that every convex open set E satisfies the present hypothesis, by 
Theorem 10.39. The relation between E and V may be expressed by saying 
that they are CC''-equivalent. 

Thus every closedform is exact in any set which is CC''-equivalent to a convex 
open set. 
-

Proof Let ro be a k-form in V, witp dro = 0. By Theorem 10.22(c), 
roT is a k-form in E for which d(roT) = 0. Hence roT = d). for some 
(k - 1)-form ). in E. By Theorem 10.23, and another application of 
Theorem 10.22(c), 

ro = (roT)s = (d).)s = d().s). 

Since As is a (k - 1)-form in V, ro is exact in V. 

10.41 Remark In applications, cells (see Definition 2.17) are often more con
venient parameter domains than simplexes. If our whole development had 
been based on cells rather than simplexes, the computation that occurs in the 
proof of Stokes' theorem would be even simpler. (It is done that way in Spivak's 
book.) The reason for preferring simplexes is that the definition of the boundary 
of an oriented simplex seems easier and more natural than is the case for a cell. 
(See Exercise 19.) Also, the partitioning of sets into simplexes (called ''tri~ngu
lation'') plays an important role in topology, and there are strong connections 
between certain aspects of topology, on the one hand, and differential forms, 
on the other. These are hinted at in Sec. 10.35. The book by Singer anq Thorpe 
contains a good introduction to this topic. 

Since every cell can be triangulated, we may regard it as a chain. For 
dimension 2, this was done in Example 10.32; for dimension 3, see Exercise 18. 

Poincare's lemma (Theorem 10.39) can be proved in several ways. See, 
for example, page 94 in Spivak's book, or page 280 in Fleming's. Two simple 
proofs for certain special cases are indicated in Exercises 24 and 27. 

VECTOR ANALYSIS 

We conclude this chapter with a few applications of the preceding material to 
theorems concerning vector analysis in R3

• These are special cases of theorems 
about differential forms, but are usually stated in different terminology. We 
are thus faced with the job of translating from one language to another. 
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10.42 Vector fields Let F = F1 e1 + F2 e2 + F3 e3 be a continuous mapping of 
an open set E c R3 into R3

• Since F associates a vector to each point of E, F 
is sometimes called a vector field, especially in physics. With every such F is 
associated a I-form 

(124) 

and a 2-form 

(125) ro, = F1 dy" dz+ F2 dz" dx + F3 dx I\ dy. 

Here, and in the rest of this chapter, we use the customary notation (x, y, z) 
in place of (x1, x 2 , x3). 

It is clear, conversely, that every I-form A in Eis l, for some vector field 
Fin E, and that every 2-form ro is ro, for some F. In R3

, the study of I-forms 
and 2-forms is thus coextensive with the study of vector fields. 

If u e ~'(£) is a real function, then its gradient 

Vu= (D1u)e1 + (D 2 u)e2 + (D3 u)e3 

is an example of a vector field in E. 
Suppose now that Fis a vector field in E, of class ~ 1

• Its curl V x Fis the 
vector field defined in E by 

V x F = (D2F3 - D 3 F2)e1 + (D3 F1 - D1F3)e2 + (D1F2 - D 2 F1)e3 

and its divergence is the real function V · F defined in E by 

V · F = D1F1 + D2 F2 + D 3 F3 • 

These quantities have various physical interpretations. We refer to the 
book by 0. D. Kellogg for more details. 

Here are some relations between gradients, curls, and divergences. 

10.43 Theorem Suppose E is an open set in R3
, u e ~''(£), and G is a vector 

field in E, of class C11
• 

(a) Jf F = Vu, then V x F = 0. 
(b) If F = V x G, then V · F = 0. 

Furthermore, if E is ~''-equivalent to a convex set, then (a) and (b) have 
converses, in which we assume that F is a vector field in E, of class ~': 

(a 1
) If V x F = 0, then F = Vu for some u e ~ 11(£). 

(b 1
) /fV · F = 0, then F = V x Gfor some vector field Gin E, of class ~ 11 

Proof If we compare the definitions of Vu, V x F, and V · F with the 
differential forms A, and ro, given by (124) and (125), we obtain the 
following four statements: 
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F=Vu if and only if ;., = du. 

VxF=O if and only if dJ., = 0. 

F=VxG if and only if m, =dlc, 

V · F=O if and only if dm, = 0. 

Now if F = Vu, then Ji.,= du, hence dJ., = d 2u = 0 (Theorem 10.20), 
which means that V x F = 0. Thus (a) is proved. 

As regards (a'), the hypothesis amounts to saying that dJ., = 0 in E. 
By Theorem 10.40, Ji.,= du for some 0-form u. Hence F = Vu. 

The proofs of (b) and (b') follow exactly the same pattern. 

10.44 Volume elements The k-form 

dx1 A • • • A dxk 

is called the volume element in Rk. It is often denoted by dV (or by dVk if it 
seems desirable to indicate the dimension explicitly), and the notation 

(126) f (x) dx1 A • • • A dxk = f dV 
~ ~ 

is used when <I> is a positively oriented k-surface in Rk and f is a continuous 
function on the range of <I>. 

The reason for using this terminology is very simple: If D is a parameter 
domain in Rk, and if <I> is a 1-1 <G' -mapping of D into Rk, with positive Jacobian 
J~, then the left side of (126) is 

f(<l>(u))J~(u) du= f(x) dx, 
D ~(D) 

by (35) and Theorem 10.9. 

In particular, when/= 1, (126) defines the volume of <I>. We already saw 
a special case of this in (36). 

The usual notation for dV2 is dA. 

10.45 Green's theorem Suppose Eis an open set in R 2
, a e <t'(E), Pe <t'(E), 

and Q is a closed subset of E, with positively oriented boundary oO, as described 
in Sec. 10.31. Then 

(127) (a dx + P dy) = 
Dn 

ap orx 
-- dA. 

n ox oy 



(128) 
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Proof Put A= a dx + p dy. Then 

dA. = (D2a) dy A dx + (D1P) dx Ady 

= (D1P - D2a) dA, 

and (127) is the same as 

A= dA., 
on n 

which is true by Theorem 10.33. 

With a(x, y) = -y and P(x, y) = x, (127) becomes 

½ (x dy - y dx) = A(O), 
on 

the area of 0. 
With a= 0, P = x, a similar formula is obtained. Example 10.12(b) con

tains a special case of this. 

10.46 Area elements in R3 Let <I> be a 2-surface in R3
, of class <G', with pa

rameter domain D c: R2
• Associate with each point (u, v) e D the vector 

(129) 
o(y, z) o(z, x) o(x, y) 

N(u, v) = o(u, v) e1 + o(u, v) e2 + o(u, v) e3. 

The Jacobians in (129) correspond to the equation 

(130) (x, y, z) = <l>(u, v). 

If f is a continuous function on <l>(D), the area integral off over <I> is 
defined to be 

(131) f dA = f(<l>(u, v)) I N(u, v) I du dv. 
11) D 

In particular, when/= 1 we obtain the area of <I>, namely, 

(132) A(<l>) = I N(u, v)I du dv. 
D 

The following discussion will show that (131) and its special case (132) 
are reasonable definitions. It will also describe the geometric features of the 
vector N. 

Write <I>= <p 1e1 + <p 2 e2 + <p 3 e3 , fix a point p0 = (u0 , v0 ) e D, put 
N = N(p0), put 

(133) a,= (Di <p,)(po), P, = (D2 <p 1)(p0) (i = 1, 2, 3) 
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and let Te L(R2
, R3) be the linear transformation given by 

3 

(134) T(u, v) = L (cxi u + Pi v)e1 • 
i= i 

Note that T = <I>' (p0), in accordance with Definition 9 .11. 
Let us now assume that the rank of Tis 2. (If it is 1 or 0, then N = 0, and 

the tangent plane mentioned below degenerates to a line or to a point.) The 
range of the affine mapping 

(u, v) > <l>(p0) + T(u, v) 

is then a plane Il, called the tangent plane to <I> at p0 . [One would like to call 
Il the tangent plane at <l>(p0), rather than at p0 ; if <I> is not one-to-one, this runs 
into difficulties.] 

If we use (133) in (129), we obtain 

(135) N = (cx2 P3 - OC3 P2)ei + (oc3 Pi - cx1P3)e2 + (oc1P2 - CX2 Pi)e3, 

and (134) shows that 

(136) 
3 

Tei = L ociei, 
i= 1 

3 

Te2 = L Piei • 
i= i 

A straightforward computation now leads to 

(137) 

Hence N is perpendicular to II. It is therefore called the normal to <I> at p0 . 

A second property of N, also verified by a direct computation based on 
(135) and (136), is that the determinant of the linear transformation of R3 that 
takes { ei, e2 , e3} to {Te1, Te2 , N} is I N 12 > 0 (Exercise 30). The 3-simplex 

(138) • 

is thus positively oriented. 
The third property of N that we shall use is a consequence of the first two: 

The above-mentioned determinant, whose value is IN j 2, is the volume of the 
parallelepiped with edges [O, Tei], [O, Te2 ], [O, N]. By (137), [O, N] is perpen
dicular to the other two edges. The area of the parallelogram with vertices 

(139) 

is the ref ore I N j • 
This parallelogram is the image under T of the unit square in R2. If E 

is any rectangle in R2
, it follows (by the linearity of T) that the area of the 

parallelogram T(E) is 

(140) A(T(E)) = IN I A(E) = I N(u0 , v0) I du dv. 
E 
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We conclude that(l32)is correct when <I> is affine. To justify the definition 
(132) in the general case, divide D into small rectangles, pick a point (u0 , v0 ) 

in each, and replace <I> in each rectangle by the corresponding tangent plane. 
The sum of the areas of the resulting parallelograms, obtained via (140), is then 
an approximation to A(<I>). Finally, one can justify (131) from (132) by approxi
mating f by step functions. 

10.47 Example Let O <a< b be fixed. Let K be the 3-cell determined by 

0 ~ t ~ a, 

The equations 

(141) 

0 ~ u ~ 2n, 0 ~ V ~ 2n. 

X = t COS U 

y = (b + t sin u) cos v 

z = (b + t sin u) sin v 

describe a mapping q, of R 3 into R 3 which is 1-1 in the interior of K, such that 
\J:'(K) is a solid torus. Its Jacobian is 

o(x, y, z) . 
Jq, = o( ) = t(b + t sin u) 

t, U, V 

which is positive on K, except on the face t = 0. If we integrate Jq, over K, we 
obtain 

as the volume of our solid torus. 
Now consider the 2-chain <I>= o\J:1. (See Exercise 19.) q, maps the faces 

u = 0 and u = 2n of K onto the same cylindrical strip, but with opposite orienta
tions. q, maps the faces v = 0 and v = 2n onto the same circular disc, but with 
opposite orientations. q, maps the face t = 0 onto a circle, which contributes 0 
to the 2-chain o\J:1. (The relevant Jacobians are 0.) Thus <I> is simply the 2-surface 
obtained by setting t = a in (141), with parameter domain D the square defined 
by O ~ u ~ 2n, 0 ~ v ~ 2n. 

According to (129) and (141), the normal to <I> at (u, v) E D is thus the 
vector 

N(u, v) = a(b + a sin u)n(u, v) 

where 

n(u, v) = (cos u)e1 + (sin u cos v)e2 + (sin u sin v)e3 • 
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Since ln(u, v)I = 1, we have IN(u, v)I = a(b + a sin u), and if we integrate this 
over D, (131) gives 

A(<l>) = 4n2ab 

as the surface area of our torus. 
If we think of N = N(u, v) as a directed line segment, pointing from 

<l>(u, v) to <l>(u, v) + N(u, v), then N points outward, that is to say, away from 
\J:'(K). This is so because Jq, > 0 when t = a. 

For example, take u = v = n/2, t = a. This gives the largest value of z on 
\J:'(K), and N = a(b + a)e3 points ''upward'' for this choice of (u, v). 

10.48 Integrals of 1-forms in R3 Let y be a ~' -curve in an open set E c R 3
, 

with parameter interval [O, 1 ], let F be a vector field in E, as in Sec. I 0.42, and 
define Ji., by (124). The integral of Ji., over y can be rewritten in a certain way 
which we now describe. 

For any u e [O, l], 

y'(u) = y{(u)e1 + y~(u)e2 + y3(u)e3 

is called the tangent vector to y at u. We define t = t(u) to be the unit vector in 
the direction of y'(u). Thus 

y'(u) = I y'(u) I t(u). 

[If y'(u) = 0 for some u, put t(u) = e1 ; any other choice would do just as well.] 
By (35), 

1 

Fi(y(u))y;(u) du 
0 

1 
(142) -- F(y(u)) · y'(u) du 

0 

1 
-- F(y(u)) · t(u) I y'(u) I du. 

0 

Theorem 6.27 makes it reasonable to call I y'(u) I du the element of arc 
length along y. A customary notation for it is ds, and (142) is rewritten in the 
form 

(143) 
'I 'I 

Since tis a unit tangent vector to y, F ·tis called the tangential component 
of F along y. 
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The right side of (143) should be regarded as just an abbreviation for the 
last integral in (142). Tl1e point is that F is defined on the range of y, butt is 
defined on [O, 1]; thus F • t has to be properly interpreted. Of course, when y 
is one-to-one, then t(u) can be replaced by t(y(u)), and this difficulty disappears. 

10.49 Integrals of 2-forms in R3 Let <I> be a 2-surface in an open set E c: R3
, 

of class ~', with parameter domain D c: R2
• Let F be a vector field in E, and 

define wF by (125). As in the preceding section, we shall obtain a different 
representation of the integral of wF over <I>. 

By (35) and (129), 

wF = (F1 dy A dz + F2 dz A dx + F3 dx A dy) 
cJ) cJ) 

-- (F
1 

o <I>) o(y, z) + (F
2 

o <I>) o(z, x) + (F
3 

o <I>) o(x, y) du dv 
D o(U, V) o(u, v) O(U, V) 

-- F(<I>(u, v)) · N(u, v) du dv. 
D 

Now let n = n(u, v) be the unit vector in the direction of N(u, v). [If 
N(u, v) = 0 for some (u, v) E D, take n(u, v) = e1.] Then N = IN In, and there
fore the last integral becomes 

F(<I>(u, v)) · n(u, v) I N(u, v) I du dv. 
D 

By ( 131 ), we can finally write this in the form 

(144) 

With regard to the meaning of F · n, the remark made at the end of Sec. 10.48 
applies here as well. 

We can now state the original form of Stokes' theorem. 

10.50 Stokes' formula If Fis a vector field of class~' in an open set E c: R 3
, 

and if <I> is a 2-surface of class ~,, in E, then 

(145) 

(146) 

(V x F) • n dA = (F · t) ds. 
cJ> ocJ> 

Proof Put H = V x F. Then, as in the proof of Theorem 10.43, we have 

We= d).F. 
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Hence 

(V x F) • n dA = (H · n) dA = w8 
~ ~ ~ 

-- (F · t) ds. 
0~ 

Here we used the definition of H, then (144) with H in place of F, 
then (146), then-the main step-Theorem 10.33, and finally (143), 
extended in the obvious way from curves to I-chains. 

10.51 The divergence theorem If F is a vector field of class <c' in an open set 
E c: R 3

, and if n is a closed subset of E with positively oriented boundary o!l 
(as described in Sec. 10.31) then 

(147) (V • F) dV = (F · n) dA. 
n an 

Proof By (125), 

dw, = (V · F) dx A dy A dz = (V · F) dV. 

Hence 
.. 

(V · F) dV = dw, = w, = (F · n) dA, 
n n an an 

by Theorem 10.33, applied to the 2-form w,, and (144). 

EXERCISES 

1. Let H be a compact convex set in Rk, with nonempty interior. Let f E CC(H), put 
f(x) = 0 in the complement of H, and define f Hf as in Definition 10.3. 

Prove that f n f is independent of the order in which the k integrations are 
carried out. 

Hint: Approximate f by functions that are continuous on Rk and whose 
supports are in H, as was done in Example 10.4. 

2. For i = 1, 2, 3, ... , let cp, E CC(R 1
) have support in (2-', 21

-
1
), such that f cp, = 1. 

Put 
00 

f(x,y)='E [cp,(x)- <p1+1(x)]cp,(y) 
I= 1 

Then f has compact support in R 2
, f is continuous except at (0, O), and 

dy f(x, y) dx = 0 but dx f(x, y) dy = 1. 

Observe that/ is unbounded in every neighborhood of (0, 0). 



INTEGRATION OF DIFFERENTIAL FORMS 289 

3. (a) If Fis as in Theorem 10.7, put A= F'(O), F1(x) = A- 1F(x). Then F1(0) = /. 
Show that 

F1(x) = Gn O Gn-1 0 ''' 0 G1(X) 

in some neighborhood of 0, for certain primitive mappings G1, ... , Gn. This 
gives another version of Theorem 10.7: 

F(x) = F'(O)Gn o Gn -1 o • • • o G1 (x). 

(b) Prove that the mapping (x, y) > (y, x) of R 2 onto R 2 is not the composition 

of any two primitive mappings, in any neighborhood of the origin. (This shows 
that the flips B, cannot be omitted from the statement of Theorem 10.7.) 

4. For (x, y) e R 2
, define 

F(x, y) = (ex cosy - 1, ex sin y). 

Prove that F = G2 o G1, where 

G1(x, y) = (ex cosy - 1, y) 

G2(u, v) = (u, (1 + u) tan v) 

are primitive in some neighborhood of (0, 0). 
Compute the Jacobians of G1, G2, Fat (0, 0). Define 

H2(x, y) = (x, ex sin y) 

and find 
H1(u, v) = (h(u, v), v) 

so that F = H1 o H2 is some neighborhood of (0, 0). 
S. Formulate and prove an analogue of Theorem 10.8, in which K is a compact 

subset of an arbitrary metric space. (Replace the functions cp, that occur in the 
proof of Theorem 10.8 by functions of the type constructed in Exercise 22 of 
Chap. 4.) 

6. Strengthen the conclusion of Theorem 10.8 by showing that the functions if,, can 
be made differentiable, and even infinitely differentiable. (Use Exercise 1 of 
Chap. 8 in the construction of the auxiliary functions cp, .) 

7. (a) Show that the simplex Qk is the smallest convex subset of Rk that contains 

O,e1,,,.,ek. 
(b) Show that affine mappings take convex sets to convex sets. 

8. Let H be the parallelogram in R 2 whose vertices are (1, 1), (3, 2), (4, 5), (2, 4). 
Find the affine map T which sends (0, 0) to (1, 1), (1, 0) to (3, 2), (0, 1) to (2, 4). 

Show that Jr= 5. Use T to convert the integral 

ex= ex->1 dx dy 
H 

to an integral over 12 and thus compute ex. 



290 PRINCIPLES OF MATHEMATICAL ANALYSIS 

9. Define (x, y) = T(r, 0) on the rectangle 

0 ~r ~a, 

by the equations 

X = r COS 0, y = r sin 0. 

Show that T maps this rectangle onto the closed disc D with center at (0, 0) and 
radius a, that Tis one-to-one in the interior of the rectangle, and that Jr(r, 0) = r. 
If f e fl(D), prove the formula for integration in polar coordinates: 

II 2ff 

f(x, y) dx dy = f(T(r, 0))r dr d0. 
D O O 

Hint: Let Do be the interior of D, minus the interval from (0, 0) to (0, a). 
As it stands, Theorem 10.9 applies to continuous functions/ whose support lies in 
Do. To remove this restriction, proceed as in Example 10.4. 

10. Let a ➔ oo in Exercise 9 and prove that 

co 2111 

f(x, y) dx dy = f(T(r, 0})r dr d0, 
.R2 0 0 

for continuous functions f that decrease sufficiently rapidly as Ix I + I y I ► oo. 
(Find a more precise formulation.) Apply this to 

f(x, y) = exp (-x 2 
- y 2

) 

to derive formula (101) of Chap. 8. 
11. Define (u, v) = T(s, t) on the strip 

0 <s < oo, O<t<l 

by setting u = s - st, v = st. Show that Tis a 1-1 mapping of the strip onto the 
positive quadrant Qin R2

• Show that Jr(s, t) = s. 
For x > 0, y > 0, integrate 

over Q, use Theorem 10.9 to convert the integral to one over the strip, and derive 
formula (96) of Chap. 8 in this way. 

(For this application, Theorem 10.9 has to be extended so as to cover certain 
improper integrals. Provide this extension.) 

12. Let Jk be the set of all u = (u1, ... , uk) e Rk with O ~ u1 ~ l for all i; let Q" be the 
set of all x = (x1, ... , xk) e Rk with x, ~ 0, I:x, ~ 1. (Jk is the unit cube; Qk is 
the standard simplex in Rk.) Define x = T(u) by 

Xi= U1 

X2 = (1 - U1)U2 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

Xk = (l - U1) ••• (1 - Uk-1)Uk. 
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Show that 

Show that T maps I" onto Q", that Tis 1-1 in the interior of I", and that its 
inverse Sis defined in the interior of Q" by u1 = Xi and 

X1 u,=-------
l-x1-···-x1-1 

for i = 2, ... , k. Show that 

Jr(U) = (} - U1)"- 1(l - U2)"- 2 ''' (} - Ut-1), 

and 

Js(X) = [(l - X1)(l - Xi - X2) • •' (1 - Xi - • • • - Xt-1)]- 1. 

13. Let r1, ••• , '" be nonnegative integers, and prove that 

r ' ... r ' 
, 1 '" d 1 • ". Xi ···x" x=-------

Qk (k + r1 + · · · + r1r.) ! 

Hint: Use Exercise 12, Theorems 10.9 and 8.20. 
Note that the special case r1 = · • · = '" = 0 shows that the volume of Q" 

is 1/k !. 
14. Prove formula (46). 
15. If w and ,\ are k- and m-forms, respectively, prove that 

w I\,\ =(-l)"m,\ /\ w. 

16. If k z 2 and u = [Po, Pi, ... , Pt] is an oriented affine k-simplex, prove that 02 u = 0, 
directly from the definition of the boundary operator o. Deduce from this that 
o2'Y = O for every chain 'Y. 

Hint: For orientation, do it first fork= 2, k = 3. In general, if i <i, let u,1 

be the (k - 2)-simplex obtained by deleting p, and p1 from u. Show that each u,1 

occurs twice in o2 u, with opposite sign. 
17. Put J 2 = T1 + T2, where 

T1 = [O, e1, e1 + e2], 

Explain why it is reasonable to call J 2 the positively oriented unit square in R 2
• 

Show that 0J2 is the sum of 4 oriented affine I-simplexes. Find these. What is 
0(7'1 - 7'2)? 

18. Consider the oriented affine 3-simplex 

in R 3 • Show that u1 (regarded as a linear transformation) has determinant 1. 
Thus u1 is positively oriented. 
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Let CJ 2 , ••• , CJ 6 be five other oriented 3-simplexes, obtained as follows: 
There are five permutations (i1, i2, i3) of (1, 2, 3), distinct from (1, 2, 3). Associate 
with each (i1, i2, i3) the simplex 

wheres is the sign that occurs in the definition of the determinant. (This is how -r2 

was obtained from T1 in Exercise 17.) 
Show that CJ2, ••• , CJ6 are positively oriented. 
Put J 3 = CJ1 + · · · + CJ6. Then J 3 may be called the positively oriented unit 

cube in R 3 • 

Show that 8J3 is the sum of 12 oriented affine 2-simplexes. (These 12 tri
angles cover the surface of the unit cube / 3,) 

Show that x = (xi, X2, X3) is in the range of CJ1 if and only if O ~ X3 ~ X2 

:::;:;; X 1 :::::;: 1 , 
Show that the ranges of CJ1, ••• , CJ6 have disjoint interiors, and that their 

unic,n covers / 3
• (Compare with Exercise 13; note that 3 ! = 6.) 

19. Let J 2 and J 3 be as in Exercise 17 and 18. Define 

Boi(u, v) = (0, u, v), 
Bo2(u, v) = (u, 0, v), 

Bo3(U, v) = (u, v, 0), 

These are affine, and map R2 into R3 • 

B11(u, v) = (1, u, v), 
B12(u, v) = (u, 1, v), 

B13(u, v) = (u, v, 1). 

Put f3,1 = B,1(J2), for r = 0, 1, i = 1, 2, 3. Each f3,1 is an affine-oriented 
2-chain. (See Sec. 10.30.) Verify that 

3 

0J 3 = I: (-1)1(/301 - /311), 
I= 1 

in agreement with Exercise 18. 
20. State conditions under which the formula 

I dw = fw - (df) I\ w 
• a• • 

is valid, and show that it generalizes the formula for integration by parts. 
Hint: d(fw) = (df) I\ w + I dw. 

21. As in Example 10.36, consider the 1-form 

xdy-ydx 
1J = Xl + yl 

in R2 
- {O}. 

(a) Carry out the computation that leads to formula (113), and prove that d71 = 0. 

(b) Let y(t) = (r cost, r sin t), for some r > 0, and let r be a <tfn-curve in R2 
- {O}, 
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with parameter interval [O, 21r], with r(O) = I'(21r), such that the intervals [y(t), 
I'(t)] do not contain O for any t e [O, 21r]. Prove that 

TJ = 21r. 
r 

Hint: For Os;: t:::;; 21r, 0:::;; u:::;; 1, define 

tl>(t, u) = (1 - u) I'(t) + uy(t). 

Then tI> is a 2-surface in R2 
- {O} whose parameter domain is the indicated rect

angle. Because of cancellations (as in Example 10.32), 

ett> = r - y. 

Use Stokes' theorem to deduce that 

because dTJ = 0. 

(c) Take r(t) = (a cost, b sin t) where a> 0, b > 0 are fixed. Use part (b) to 
show that 

(d) Show that 

2n ab 

0 
2 2 b2 • 2 dt = 21r. 

a cos t + sin t 

y 
TJ = d arc tan

x 

in any convex open set in which x =I= 0, and that 

X 
TJ = d - arc tan -

y 

in any convex open set in which y =I= 0. 
Explain why this justifies the notation TJ = d0, in spite of the fact that TJ is 

not exact in R 2 
- {0}. 

(e) Show that (b) can be derived from (d). 

(/) If r is any closed <c' -curve in R 2 
- {0}, prove that 

1 
TJ = Ind(r). 

27T r 

(See Exercise 23 of Chap. 8 for the definition of the index of a curve.) 



294 PRINCIPLES OF MATHEMATICAL ANALYSIS 

22. As in Example 10.37, define { in R 3 
- {0} by 

{ = x dy I\ dz + y dz I\ dx + z dx I\ dy 
rl 

where r = (x2 + y 2 + z2
)

112
, let D be the rectangle given by O:::;: u ~ 1r, 0 s v ~ 21r, 

and let ~ be the 2-surface in R3 , with parameter domain D, given by 

• • • x = sin u cos v, y = sin u sin v, z = cos u. 

(a) Prove that d{ = 0 in R 3 
- {O}. 

(b) Let S denote the restriction of~ to a parameter domain E c D. Prove that 

{ = sin u du dv = A(S), 
$ E 

where A denotes area, as in Sec. 10.43. Note that this contains (115) as a special 
case. 

(c) Suppose g, hi, h2, h3, are <tf''-functions on [O, 1], g > 0. Let (x, y, z) = tl>(s, t) 
define a 2-surface tt>, with parameter domain / 2

, by 

x = g(t)hi(s), 

Prove that 

directly from (35). 
• 

Note the shape of the range of tI>: For fixed s, tl>(s, t) runs over an interval 
on a line through 0. The range of tI> thus lies in a ''cone'' with vertex at the origin. 

(d) Let Ebe a closed rectangle in D, with edges parallel to those of D. Suppose 
/ E <tf"(D),/> 0. Let n be the 2-surface with parameter domain E, defined by 

O(u, v) = f(u, v) ~ (u, v). 

Define Sas in (b) and prove that 

(Since S is the ''radial projection'' of n into the unit sphere, this result makes it 
reasonable to call J n{ the ''solid angle'' subtended by the range of .0 at the origin.) 

Hint: Consider the 3-surface 'Y given by 

'Y(t, u, v) = [1 - t + tf(u, v)] ~ (u, v), 

where (u, v) EE, 0 st s 1. For fixed v, the mapping (t, u) > 'Y(t, u, v) is a 2-sur-
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face tI> to which {c) can be applied to show that J ~, = 0. The same thing holds 
when u is fixed. By (a) and Stokes' theorem, 

(e) Put ,\ = - (z/r)11, where 

xdy-ydx 
'TJ = x2 + y2 , 

as in Exercise 21. Then,\ is a 1-form in the open set V c R 3 in which x 2 + y 2 > 0. 
Show that , is exact in V by showing that 

'= d,\. 

{/) Derive (d) from (e), without using (c). 
Hint: To begin with, assume O < u < 1T on E. By (e), 

and ,\, 
n s ~s 

Show that the two integrals of,\ are equal, by using part (d) of Exercise 21, and by 
noting that z/r is the same at ~(u, v) as at O(u, v). 

{g) Is , exact in the complement of every line through the origin? 
23. Fix n. Define rk = (xf + · · · + x~)112 for 1 s ks n, let Ek be the set of all x E Rn 

at which rk > 0, and let wk be the (k - 1)-form defined in Ek by 
k 

wk = (rk) - k L ( -1 )1 
-

1 x, dx 1 /\ • • • /\ dx, - 1 /\ dx, + 1 /\ • • • /\ dxk . 
I= 1 

Note that w2 = 'T/, W3 = ,, in the terminology of Exercises 21 and 22. Note 
also that 

E1 C E2 C • • • C En= R" - {0}. 

(a) Prove that dwk = 0 in Ek. 
(b) Fork= 2, ... , n, prove that wk is exact in Ek_ 1, by showing that 

wk= d(fkwk-1) = (d/k) /\ Wk-1, 

where /k(x) = (- l)k gk(xk/rk) and 

and 

t 
(1 - s2)<k- J>12 ds 

-1 

Hint: fk satisfies the differential equations 

X '(v'/k)(X) = 0 

(-1 <t< 1). 
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(c) Is Wn exact in En? 
(d) Note that (b) is a generalization of part (e) of Exercise 22. Try to extend some 
of the other assertions of Exercises 21 and 22 to wn, for arbitrary n. 

24. Let w =~a,(x) dx, be a 1-form of class re'' in a convex open set E c R". Assume 
dw = 0 and prove that w is exact in E, by completing the following outline: 

Fix p E £. Define 

/(x)= w (XE£). 
[P,X] 

Apply Stokes' theorem to affine-oriented 2-simplexes [p, x, y] in E. Deduce that 

n 1 

/(y) - /(x) = L (y, - X1) a,((1 - t)x + ty) dt 
I= 1 0 

for x EE, y E £. Hence (D,/)(x) = a,(x). 

25. Assume that w is a 1-form in an open set E c R" such that 

w=O 

for every closed curve yin E, of class CC'. Prove tl1at w is exact in E, by imitating 
part of the argument sketched in Exercise 24. 

26. Assume w is a 1-form in R 3 - {0}, of class CC' and dw =0. Prove that w is exact in 
R 3 - {0}. 

Hint: Every closed continuously differentiable curve in R 3 
- {O} is the 

boundary of a 2-surface in R 3 - {0}. Apply Stokes' theorem and Exercise 25. 

27. Let Ebe an open 3-cell in R 3 , with edges parallel to the coordinate axes. Suppose 
(a, b, c) E E,f, E CC'(£) for i = 1, 2, 3, 

w =/1 dy /\dz+ /2 dz/\ dx + /3 dx /\ dy, 

and assume that dw = 0 in E. Define 

where 

% 1 

gi(x, y, z) = f2(x, y, s) ds - f3(X, t, c) dt 
C b 

% 

U2(x, y, z) = - /1(x, y, s) ds, 
C 

for (x, y, z) E £. Prove that d'A =win E. 
Evaluate these integrals when w = , and thus find the form A that occurs in 

part (e) of Exercise 22. 
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28. Fix b > a > 0, define 

tl>(r, 0) = (r cos 0, r sin 0) 

for a:::;; r:::;; b, 0:::;: 0:::;; 21r. (The range of <I> is an annulus in R2 .) Put w = x 3 dy, 
and compute both 

dw and w 

to verify that they are equal. 
29. Prove the existence of a function IX with the properties needed in the proof of 

Theorem 10.38, and prove that the resulting function F is of class CC'. (Both 
assertions become trivial if E is an open cell or an open ball, since IX can then be 
taken to be a constant. Refer to Theorem 9.42.) 

30. If N is the vector given by (135), prove that 

IX1 /31 IX.2/33 - IX3/32 

det IX2 /32 1X3/31 - 1X1/33 = IN I 2• 

IX3 /33 IX1/32 - IX2/31 

Also, verify Eq. (137). 

31. Let E c: R 3 be open, suppose g E ~''(£), h E CC''(£), and consider the vector field 

F =g "v h. 

(a) Prove that 

v' · F = g v' 2h + (v'g) · ("vh) 

where v' 2h = v' · (v'h) = "£,8 2h/oxf is the so-called ''Laplacian'' of h. 
(b) If n is a closed subset of E with positively oriented boundary en (as in 
Theorem 10.51), prove that 

[g "v 2h + (v'g) · (v'h)]dV = 
n 

oh 
g

0 
dA 

"" n 

where (as is customary) we have written oh/on in place of ("vh) · n. (Thus oh/on 
is the directional derivative of h in the direction of the outward normal to en, the 
so-called normal derivative of h.) Interchange g and h, subtract the resulting 
formula from the first one, to obtain 

n 
oh -hdg d'" 

g on on .tt. 

"" 
These two formulas are usually called Green's identities. 

(c) Assume that h is harmonic in E; this means that v' 2h = 0. Take g = 1 and con
clude that 

oh 
0 

dA = 0. 
"" n 
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Take g = h, and conclude that h = O inn if h = 0 on 80. 
(d) Show that Green's identities are also valid in R 2

• 

32. Fix S, 0 < S < 1. Let D be the set of all (0, t) E R 2 such that O :S: 0 :S: 1r, -8 :S: t :S: S. 
Let <I> be the 2-surface in R 3

, with parameter domain D, given by 

x = (1 - t sin 0) cos 20 
y = (1 - t sin 0) sin 20 
z = t cos 0 

where (x, y, z) = '1>(0, t). Note that <l>(1r, t) = '1>(0, - t), and that <I> is one-to-one 
on the rest of D. 

The range M = <l>(D) of '1> is known as a Mobius band. It is the simplest 
example of a nonorientable surface. 

Prove the various assertions made in the following description: Put 
Pi= (0, -S), P2 = (1r, -S), p3 = (1r, S), p4 = (O, S), Ps = P1, Put y, =[Pi, p, +1], 
i = 1, ... , 4, and put r, = <I> o y,. Then 

8<1> = r 1 + r 2 + r 3 + r 4 • 

Put a= (1, 0, -S), b = (1, 0, S). Then 

and 8'1> can be described as follows. 
r1 spirals up from a to b; its projection into the (x, y)-plane has winding 

number + 1 around the origin. (See Exercise 23, Chap. 8.) 
r2 = [b, a]. 
r 3 spirals up from a to b; its projection into the (x, y) plane has winding 

number -1 around the origin. 
r4 = [b, a]. 
Thus 8<1> = I'1 + r3 + 2I'2. 
If we go from a to b along r1 and continue along the ''edge'' of M until we 

return to a, the curve traced out is 

which may also be represented on the parameter interval [O, 21r] by the equations 

x = (1 + S sin 0) cos 20 
y = (1 + S sin 0) sin 20 
z= -Scos 0. 

It should be emphasized that r i=- 8<1>: Let TJ be the 1-form discussed in 
Exercises 21 and 22. Since dTJ = 0, Stokes' theorem shows that 

TJ = 0. 



INTEGRATION OF DIFFERENTIAL FORMS 299 

But although r is the ''geometric'' boundary of M, we have 

TJ = 41r. 
r 

In order to avoid this possible source of confusion, Stokes' formula (Theorem 
10.50) is frequently stated only for orientable surfaces tl>. 



THE LEBESGUE THEORY 

It is the purpose of this chapter to present the fundamental concepts of the 
Lebesgue theory of measure and integration and to prove some of the crucial 
theorems in a rather general setting, without obscuring the main lines of the 
development by a mass of comparatively trivial detail. Therefore proofs are 
only sketched in some cases, and some of the easier propositions are stated 
without proof. However, the reader who has become familiar with the tech
niques used in the preceding chapters will certainly find no difficulty in supply
ing the missing steps. 

The theory of the Lebesgue integral can be developed in several distinct 
ways. Only one of these methods will be discussed her~. For alternative 
procedures we refer to the more specialized treatises on integration listed in 
the Bibliography. 

SET FUNCTIONS 

If A and B are any two sets, we write A - B for the set of all elements x such 
that x e A, x ¢ B. The notation A - B does not imply that B c A. We denote 
the empty set by 0, and say that A and B are disjoint if A n B = 0. 
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11.1 Definition A family f7t of sets is called a ring if A e f7t and Be f7t implies 

(1) 

(2) 

Au BE f7i, A - Be f7t. 

Since A n B = A - (A - B), we also have A n B e f7t if f7t is a ring. 
A ring f7t is called a <1-ring if 

whenever An E f7t (n = I, 2, 3, ... ). Since 

00 00 

• n An = Ai - LJ (A 1 - An), 
n=l n=l 

we also have 

if PA is a a-ring. 

11.2 Definition We say that </> is a set function defined on PA if</> assigns to 
every A e f7t a number </>(A) of the extended real number system. </> is additive 
if A n B = 0 implies 

(3) </>(A u B) = </>(A) + </>(B), 

and </> is countably additive if Ai n Ai = 0 (i '# }) implies 

00 00 

(4) <P U An = L </>(An). 
n= 1 n= 1 

We shall always assume that the range of</> does not contain both + oo 
and - oo; for if it did, the right side of (3) could become meaningless. Also, 
we exclude set functions whose only value is + oo or - oo. 

It is interesting to note that the left side of ( 4) is independent of the order 
in which the An's are arranged. Hence the rearrangement theorem shows that 
the right side of (4) converges absolutely if it converges at all; if it does not 
converge, the partial sums tend to + oo, or to - oo. 

(5) 

(6) 

If </> is additive, the following properties are easily verified: 

</>(O) = 0. 

</>(A1 u · · · uAn) = </>(A1) + · · · + </>(An) 

if Ai n Ai= 0 whenever i-::/; J. 
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(7) q,(A1 u A2) + </>(A1 n A2) = </>(A1) + q,(A2), 

If q,(A) ~ 0 for all A, and A1 c A2 , then 

(8) </>(A1) ;$; </>(A2), 

Because of (8), nonnegative additive set functions are often called 
monotonic. 

(9) </>(A - B) = </>(A) - q,(B) 

if B c A, and I (q,B)I < + oo. 

11.3 Theorem Suppose q> is countably additive on a ring Bl. Suppose An e Bl 
(n = 1, 2, 3, ... ), A1 c A2 c A 3 c ···,A e Bl, and 

Then, as n ~ oo, 

Proof Put B1 = A1 , and 

Bn=An-An-1 (n = 2, 3, ... ). 

Then Bi nBi = 0 for i "#),An= B1 u · · · u Bn, and A= UBn. Hence 

n 
q>(An) = L </>(Bi) 

i= 1 

and 

00 

</>(A) = I </>(Bi). 
i= 1 

CONSTRUCTION OF THE LEBESGUE MEASURE 

11.4 Definition Let RP denote p-dimensional euclidean space. By an interval 
in RP we mean the set of points x = (x1 , ••• , xp) such that 

(10) a-<x-<b-
' - I - I 

(i = 1, ... , p), 

or the set of points which is characterized by (10) with any or all of the ~ 
signs replaced by <. The possibility that ai = b, for any value of i is not ruled 
out; in particular, the empty set is included among the intervals. 
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If A is the union of a finite number of intervals, A is said to be an elemen
tary set. 

If / is an interval, we define 

no matter whether equality is included or excluded in any of the inequalities (10). 

(11) 

If A = 11 u · · · u In, and if these intervals are pairwise disjoint, we set 

mCA) = mCI1) + · · · + mCin). 

We let <ff denote the family of all elementary subsets of RP. 
At this point, the following properties should be verified: 

Cl2) 8 is a ring, but not a a-ring. 
(13) If A e 8, then A is the union of a finite number of disjoint intervals. 
(14) If A e 8, m(A) is well defined by (11); that is, if two different decompo-

sitions of A into disjoint intervals are used, each gives rise to the same 
value of mCA). 

(15) m is additive on 8. 

Note that if p = 1, 2, 3, then m is length, area, and volume, respectively. 

11.S Definition A nonnegative additive set function </> defined on 8 is said to 
be regular if the following is true: To every A e 8 and to every e > 0 there 
exist sets Fe 8, Ge 8 such that Fis closed, G is open, F c A c G, and 

(16) </J(G) - e ~ </>(A) ~ </>CF) + e. 

11.6 Examples 

(a) The set function m is regular. 
If A is an interval, it is trivial that the requirements of Definition 

11.5 are satisfied. The general case follows from (13). 
(b) Take RP = R1, and let ~ be a monotonically increasing f unc
tion, defined for all real x. Put 

µC[a, b)) = ~(b-) - ~ca-), 

µ([a, b]) = ~(b+) - ~ca-), 

µ((a, b]) = ~Cb+)- ~(a+), 

µ((a, b)) =~Cb-) - ~(a+). 

Here [a, b) is the set a ~ x < b, etc. Because of the possible discon
tinuities of ~, these cases have to be distinguished. If µ is defined for 
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elementary sets as in (11), µ is regu1ar on I. The proof is just like that 
of (a). 

Our next objective is to show that every regular set function on <ff can be 
extended to a countably additive set function on a a-ring which contains 8. 

11.7 Definition Let µ be additive, regular, nonnegative, and finite on 8. 
Consider countable coverings of any set E c RP by open elementary sets An: 

00 

EC LJ An. 
n= 1 

Define 

(17) 
00 

µ*(E) = inf L µ(An), 
n= 1 

the inf being taken over all countable coverings of E by open elementary sets. 
µ*(E) is called the outer measz,re of E, corresponding to µ. 

It is clear that µ*(E) ~ 0 for all E and that 

(18) µ*(E1) :5: µ*(E2) 

if E1 C E2, 

11.8 Theorem 

(a) For every A e ~, µ*(A) = µ(A). 
00 

(b) I_f E = LJ En, then 
1 

00 

(19) µ*(E) :5: L µ*(En). 
n=l 

Note that (a) asserts thatµ* is an extension ofµ from I to the family of 
all subsets of RP. The property (19) is called subadditivity. 

(20) 

Proof Choose A e 8 and e > 0. 

The regularity ofµ shows that A is contained in an open elementary 
set G such that µ(G) ~ µ(A) + e. Since µ*(A) ~ µ(G) and since e was 
arbitrary, we have 

µ*(A) ~ µ(A). 

The definition of µ* shows that there is a sequence {An} of open 
elementary sets whose union contains A, such that 

00 

L µ(An) ~ µ*(A) + B. 
n=l 
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The regularity of µ shows that A contains a closed elementary set F such 
that µ(F) ~ µ(A) - e; and since Fis compact, we have 

F C A1 U ''' U AN 

for some N. Hence 

N 

µ(A)~ µ(F) + B ~ µ(A 1 U · · · U AN) + B ~ L µ(An) + B ~ µ*(A) + 2e. 
1 

In conjunction with (20), this proves (a). 
Next, suppose E = UEn, and assume that µ*(En) < + oo for all n. 

Given e > 0, there are coverings {Ank}, k = I, 2, 3, ... , of En by open 
elementary sets such that 

CX) 

L µ(Ank) ~ µ*(En) + 2-nB. 
k=l 

Then 

00 00 00 

µ*(E)~ L L µ(Ank)~ L µ*(En)+ B, 
n= 1 k= 1 n= 1 

and (19) follows. In the excluded case, i.e., if µ*(En)=+ oo for some n, 
(19) is of course trivial. 

11.9 Definition For any A c RP, B c RP, we define 

(22) 

(23) 

S(A, B) = (A - B) u (B - A), 

d(A, B) = µ*(S(A, B)). 

We write An ➔ A if 

Jim d(A, An) = 0. 

If there is a sequence {An} of elementary sets such that An ➔ A, we say 
that A is .finitely µ-measurable and write A e 9.llp(µ). 

If A is the union of a countable collection of finitely µ-measurable sets, 
we say that A is µ-measurable and write A e 9.ll(µ). 

S(A, B) is the so-called ''symmetric difference'' of A and B. We shall see 
that d(A, B) is essentially a distance function. 

The following theorem will enable us to obtain the desired extension ofµ. 

11.10 Theorem 9.ll(µ) is a u-ring, and µ* is countably additive on 9.Jl(µ). 

Before we turn to the proof of this theorem, we develop some of the 
properties of S(A, B) and d(A, B). We have 
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(24) 

(25) 

S(A, B) = S(B, A), S(A, A)= 0. 

S(A, B) c S(A, C) u S(C, B). 

S(A1 u A2 , B1 u B2 ) 

(26) S(A 1 n A 2 , B1 n B2 ) c S(A1 , B1) u S(A 2 , B2). 

S(A1 - A2, B1 - B2) 

(24) is clear, and (25) follows from 

(A - B) c (A - C) u ( C - B), (B - A) c ( C - A) u (B - C). 

The first formula of (26) is obtained from 

(A1 u A2 ) - (B1 u B2 ) c (A1 - B1) u (A 2 - B2 ). 

Next, writing Ee for the complement of E, we have 

S(A1 n A 2 , B1 n B2 ) = S(A1 u A2, Bf u B~) 

c S(Ai, Bf) u S(A2, B~) = S(A1, B1) u S(A 2 , B2); 

and the last formula of (26) is obtained if we note that 

A1 - A2 = A1 n A2. 
By (23), (19), and (18), these properties of S(A, B) imply 

(27) d(A, B) = d(B, A), d(A, A) = 0, 

(28) d(A, B) =:; d(A, C) + d(C, B), 

d(A 1 u A 2 , B1 u B2 ) 

(29) d(A 1 n A 2 , B1 n B2 ) ::5: d(A 1, B1) + d(A 2 , B2 ). 

d(A 1 - A 2 , B1 - B2 ) 

The relations (27) and (28) show that d(A, B) satisfies the requirements 
of Definition 2.15, except that d(A, B) = 0 does not imply A= B. For instance, 
if µ = m, A is countable, and B is empty, we have 

d(A, B) = m*(A) = O; 

to see this, cover the nth point of A by an interval In such that 

m(Jn) < 2-nB. 

But if we define two sets A and B to be equivalent, provided 

d(A, B) = 0, 

we divide the subsets of RP into equivalence classes, and d(A, B) makes the set 
of these equivalence classes into a metric space. 9J11,(µ) is then obtained as the 
closure of 8. This interpretation is not essential for the proof, but it explains 
the underlying idea. 
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We need one more property of d(A, B), namely, 

I µ*(A) - µ*(B) I ~ d(A, B), 
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if at least one of µ*(A), µ*(B) is finite. For suppose O ~ µ*(B) ~ µ*(A). 
Then (28) shows that 

d(A,O) ~ d(A, B) + d(B, 0), 

that is, 

µ*(A) ~ d(A, B) + µ*(B). 

Since µ*(B) is finite, it follows that 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

µ*(A) - µ*(B) ~ d(A, B). 

Proof of Theorem 11.10 Suppose A e 9.llF(µ), Be 9.JIF(µ). Choose {An}, 
{Bn} such that An E 8. Bn E 8, An ➔ A, Bn ► B. Then (29) and (30) show 
that 

An u B,1 ➔ A u B, 

Ann Bn ➔An B, 

An - Bn ► A - B, 

µ*(An) ➔ µ*(A), 

and µ*(A) < + oo since d(An, A) ➔ 0. By (31) and (33), 9.llf(µ) is a ring. 
By (7), 

µ(An) + µ(Bn) = µ(An U Bn) + µ(An n Bn). 

Letting n ➔ oo, we obtain, by (34) and Theorem 1 l .8(a), 

µ*(A) + µ*(B) = µ*(A u B) + µ*(A n B). 

If A n B = 0, then µ*(A n B) = 0. 
It follows that µ* is additive on 9.Jl".(µ). 
Now let A e 9.ll(µ). Then A can be represented as the union of a 

countable collection of disjoint sets of 9.llp(µ). For if A = LJ A~ with 
A~ e rolF(µ), write A1 = A{, and 

A = (A I u ... u A') - (A I u ... u A I ) n 1 n n n-1 (n = 2, 3, 4, ... ). 

Then 
00 

A= LJAn 
n= 1 

is the required representation. By (19) 

00 

µ*(A) ~ L µ*(An). 
n= 1 
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On the other hand, A=> A1 u · · · u An; and by the additivity of 
µ* on 9Jl1,(µ) we obtain 

(37) µ*(A) ~ µ*(A1 u ... u An) = µ*(A1) + ... + µ*(An). 

(38) 

Equations (36) and (37) imply 
00 

µ*(A) = L µ*(An)• 
n=1 

Suppose µ*(A) is finite. Put Bn = A1 u · · · u An. Then (38) shows 
that 

00 00 

d(A, Bn) = µ*( LJ A,)= L µ*(A,) ➔ 0 
i=n+ 1 i=n+ 1 

as n ➔ oo. Hence Bn ➔ A; and since Bn e 9)1",(µ), it is easily seen that 
A E 9Jlp(µ). 

We have thus shown that A e 9Jlp(µ) if A e 9Jl(µ) and µ*(A) < + oo. 
It is now clear thatµ* is countably additive on 9Jl(µ). For if 

where {An} is a sequence of disjoint sets of 9.ll(µ), we have shown that (38) 
holds if µ*(An)< + oo for ever)' n, and in the other case (38) is trivial. 

Finally, we have to show that 9Jl(µ) is a a-ring. If An e 9.ll(µ), n = 1, 
2, 3, ... , it is clear that LJ An e 9.ll(µ) (Theorem 2.12). Suppose A e 9.ll(µ), 
B e 9Jl(µ), and 

00 

B = LJ Bn, 
n=l 

where An, Bn E 9Jlp(µ). Then the identity 

00 

An n B = LJ (An n Bi) 
i= 1 

shows that An n B e 911(µ); and since 

µ*(An n B) :S: µ*(An) < + oo, 

An n B e 9.llp(µ). Hence An - B e 9Jlp(µ), and A - B e 9Jl(µ) 
A - B = LJ:':-1 (An - B). 

• since 

We now replace µ*(A) by µ(A) if A e 9Jl(µ). Thusµ, originally only de
fined on 8, is extended to a countably additive set function on the a-ring 
9Jl(µ). This extended set function is called a measure. The special case µ = m 
is called the Lebesgue measure on RP. 
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11.11 Remarks 

(39) 

(40) 

(a) If A is open, then A e 9.ll(µ). For every open set in RP is the union 
of a countable collection of open intervals. To see this, it is sufficient to 
construct a countable base whose members are open intervals. 

By taking complements, it follows that every closed set is in 9Jl(µ). 
(b) If A e 9.ll(µ) and e > 0, there exist sets F and G such that 

Fe Ac G, 

Fis closed, G is open, and 

µ(G -A)< e, µ(A - F) < B. 

The first inequality holds sinceµ* was defined by means of coverings 
by open elementary sets. The second inequality then follows by taking 
complements. 
(c) We say that E is a Borel set if E can be obtained by a countable 
number of operations, starting from open sets, each operation consisting 
in taking unions, intersections, or complements. The collection PJ of all 
Borel sets in RP is a u-ring; in fact, it is the smallest u-ring which contains 
all open sets. By Remark (a), Ee 9Jl(µ) if Ee PJ. 
(d) If A e 9.ll(µ), there exist Borel sets F and G such that F c A c G, 
and 

µ( G - A) = µ(A - F) = 0. 

This follows from (b) if we take e = I/n and let n ► oo. 
Since A = Fu (A - F), we see that every A e 9Jl(µ) is the union of a 

Borel set and a set of measure zero. 
The Borel sets are µ-measurable for everyµ. But the sets of measure 

zero [that is, the sets E for which µ*(E) = O] may be different for different 
µ's. 
(e) For everyµ, the sets of measure zero form a u-ring. 
(/) In case of the Lebesgue measure, every countable set has measure 
zero. But there are uncountable (in fact, perfect) sets of measure zero. 
The Cantor set may be taken as an example : Using the notation of Sec. 
2.44, it is easily seen that 

(n=l,2,3, ... ); 

and since P = n En, P c En for every n, so that m(P) = 0. 
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MEASURE SPACES 

11.12 Definition Suppose X is a set, not necessarily a subset of a euclidean 
space, or indeed of any metric space. X is said to be a measure space if there 
exists a a-ring 9Jl of subsets of X (which are called measurable sets) and a non
negative countably additive set function µ (which is called a measure), defined 
on 9.ll. 

If, in addition, Xe rol, then Xis said to be a measurable space. 
For instance, we can take X = RP, 9Jl the collection of all Lebesgue

measurable subsets of RP, andµ Lebesgue measure. 
Or, let X be the set of all positive integers, 9.ll the collection of all subsets 

of X, and µ(E) the number of elements of E. 
Another example is provided by probability theory, where events may be 

considered as sets, and the probability of the occurrence of events is an additive 
(or countably additive) set function. 

In the following sections we shall always deal with measurable spaces. 
It should be emphasized that the integration theory which we shall soon discuss 
would not become simpler in any respect if we sacrificed the generality we have 
now attained and restricted ourselves to Lebesgue measure, say, on an interval 
of the real line. In fact, the essential features of the theory are brought out 
with much greater clarity in the more general situation, where it is seen that 
everything depends only on the countable additivity ofµ on a a-ring. 

It will be convenient to introduce the notation 

(41) {xlP} 

for the set of all elements x which have the property P. 

MEASURABLE FUNCTIONS 

11.13 Definition Let f be a function defined on the measurable space <X, with 
values in the extended real number system. The function/is said to be measur
able if the set 

(42) {xlf(x) > a} 

is meas1irable for every real a. 
• 

11.14 Example If X = RP and 9Jl = 9Jl (µ) as defined in Definition 11.9, 
every continuous f is measurable, since then ( 42) is an open set. 
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11.15 Theorem Each of the following four conditions implies the other three: 

(43) {xlf(x) > a} is measurable for every real a. 

(44) {xlf(x) ~ a} is measurable for every real a. 

(45) {xlf(x) < a} is measurable for every real a. 

(46) {xlf(x) ~ a} is measurable for every real a. 

Proof The relations 

oo I 
{xlf(x) ~a}= n xlf(x) > a - - , 

n= 1 n 

{xlf(x) <a}= X - {xlf(x) ~ a}, 
oo I 

{xlf(x) ~a}= n xlf(x) <a+ - , 
n=l n 

{xlf(x) >a}= X - {xlf(x) ~ a} 

show successively that (43) implies (44), (44) implies (45), (45) implies 
(46), and (46) implies (43). 

Hence any of these conditions may be used instead of ( 42) to define 
measurability. 

11.16 Theorem If f is measurable, then Ill is measurable. 

Proof 

{x I lf(x) I < a} = {x lf(x) < a} ('\ {x lf(x) > - a}. 

11.17 Theorem Let{/:} be a sequence of measurable functions. For x e X, put 

g(x) = supf,.(x) (n = 1, 2, 3, ... ), 

h(x) = lim sup f,,(x). 
n ➔ oo 

Then g and hare measurable. 

The same is of course true of the inf and lim inf. 

Proof 
00 

{xlg(x) >a}= U {xlf,,(x) > a}, 
n=l 

h(x) = inf 9m(x), 

wheregm(x) = supf,.(x) (n ~ m). 
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Corollaries 

(47) 

(a) If f and g are measurable, then max(/, g) and min(/, g) are measurable. 
If 

1+ = max (f, 0), 1- = - min(/, 0), 

it follows, in particular, that f + and r- are measurable. 
(b) The limit of a convergent sequence of measurable functions is measurable. 

11.18 Theorem Let f and g be measurable real-valued functions de.fined on X, 
let F be real and continuous on R2

, and put 

h(x) = F(f (x), g(x)) 

Then h is measurable. 
In particular, f + g and.fg are measurable. 

Proof Let 

(x e X). 

Ga= {(u, v) I F(u, v) > a}. 

Then Ga is an open subset of R2
, and we can write 

where {Jn} is a sequence of open intervals: 

In= {(u, v)!an < U < bn, Cn < V < dn}. 

Since 

{xi an <f(x) < bn} = {xlf(x) > an} n {xlf(x) < bn} 

is measurable, it follows that the set 

{x I (f(x), g(x)) E In}= {x I an <f(x) < bn} n {x I Cn < g(x) < dn} 

is measurable. Hence the same is true of 

{x I h(x) >a}= {x I (f(x), g(x)) e Ga} 
CX) 

= U {x I (f (x), g(x)) e In}. 
n=l 

Summing up, we may say that all ordinary operations of analysis, includ
ing limit operations, when applied to measurable functions, lead to measurable 
functions; in other words, all functions that are ordinarily met with are measur
able. 

That this is, however, only a rough statement is shown by the following 
example (based on Lebesgue measure, on the real line): If h(x) = f(g(x)), where 
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f is measurable and g is continuous, then h is not necessarily measurable. 
(For the details, we refer to McShane, page 241.) 

The reader may have noticed that measure has not been mentioned in 
our discussion of measurable functions. In fact, the class of measurable func
tions on X depends only on the u-ring 9Jl (using the notation of Definition 11.12). 
For instance, we may speak of Borel-measurable functions on RP, that is, of 
function ff or which 

{xlf(x) > a} 

is always a Borel set, withot1t reference to any particular measure. 

SIMPLE FUNCTIONS 

11.19 Definition Let s be a real-valued function defined on X. If the range 
of s is finite, we say that s is a simple function. 

Let E c X, and put 

(48) 
(x e E), 
(x ¢ E). 

K8 is called the characteristic function of E. 
Suppose the range of s consists of the distinct numbers c1, ••. , en. Let 

E, = {xls(x) = c,} (i = 1, ... , n). 

Then 

(49) 

that is, every simple function is a finite linear combination of characteristic 
functions. It is clear thats is measurable if and only if the sets E1, ••• , En are 
measurable. 

It is of interest that every function can be approximated by simple 
functions: 

11.20 Theorem Let f be a real function on X. There exists a sequence {sn} of 
simple functions such that sn(x) ➔J(x) as n ➔ oo,for every x e X. If f is measur
able, {sn} may be chosen to be a sequence of measurable functions. If f ~ 0, {sn} 
may be chosen to be a monotonically increasing sequence. 

Proof If f ~ 0, define 

i - I i 
X 2n ~f(x) < 2n , Fn = {xlf(x) ~ n} 
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(50) 

for n = 1, 2, 3, ... , i = 1, 2, ... , n2n. Put 

n2n i - 1 
Sn= L 2n KEn1 + nKFn• 

i= 1 

In the general case, let/= 1+ - 1-, and apply the preceding construction 
to/+ and to/-. 

It may be noted that the sequence {sn} given by (50) converges 
uniformly to .f if f is bounded. 

INTEGRATION 

We shall define integration on a measurable space X, in which rot is the a-ring 
of measurable sets, and µ is the measure. The reader who wishes to visualize 
a more concrete situation may think of X as the real line, or an interval, and of 
µ as the Lebesgue measure m. 

11.21 DefinitioD Suppose 
n 

(51) s(x) = L c, KE,(x) (x e X, c, > 0) 
I= 1 

is measurable, and suppose Ee rot. We define 

(52) 

(53) 

n 

IE(s) = L c,µ(E n E1). 
i= 1 

If /is measurable and nonnegative, we define 

f dµ = sup IE(s), 
E 

where the sup is taken over all measurable simple functions s such that O:::;; s :::;;f 
The left member of (53) is called the Lebesgue integral off, with respect 

to the measureµ, over the set E. It should be noted that the integral may have 
the value + oo. 

It is easily verified that 

(54) s dµ = IE(s) 
E 

for every nonnegative simple measurable functions. 

11.22 Definition Let/ be measurable, and consider the two integrals 

(55) 1+ dµ, 1- dµ, 
E E 

where/+ and/- are defined as in (47). 
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If at least one of the integrals (55) is finite, we define 

(56) 

If both integrals in (55) are finite, then (56) is finite, and we say that f is 
integrable (or summable) on E in the Lebesgue sense, with respect toµ; we write 
/ e !l'(µ) on E. Ifµ = m, the usual notation is:/ e !l' on E. 

This terminology may be a little confusing: If (56) is + oo or - oo, then 
the integral of/ over E is defined, although/ is not integrable in the above 
sense of the word; .f is integrable on E only if its integral over E is finite. 

We shall be mainly interested in integrable functions, although in some 
cases it is desirable to deal with the more general situation. 

11.23 Remarks The following properties are evident: 
• ~ 

(a) If/ is measurable and bounded on E, and if µ(E) < + oo, then 
/ e !l'(µ) on E. 

(b) If a sf(x) Sb for x e E, and µ(E) < + oo, then 

aµ(E) s f dµ s bµ(E). 
E 

(c) If/ and g e !l'(µ) on E, and if f(x) S g(x) for x e E, then 

fdµ s gdµ. 
E E 

(d) If/ e !l'(µ) on E, the11 cf e !l'(µ) on E, for every finite constant c, and 

cf dµ = c f dµ. 
E E 

(e) If Jt(E) = 0, and/is measurable, then 

fdµ =0. 
E 

(/) If f e !l'(µ) on E, A e rot, and A c E, then/ e !l'(µ) on A. 

11.24 Theorem 

(a) Suppose f is measurable and nonnegative on X. For A e IDl, define 

(57) </>(A) = f dµ. 
A 
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(58) 

(59) 

(60) 

Then </> is countably additive on IDl. 
(b) The same conclusion holds if I e !l'(µ) on X. 

Proof It is clear that (b) follows from (a) if we write I= 1+ - 1- and 
apply (a) to I+ and to 1-. 

To prove (a), we have to show that 

CX) 

</>(A) = L </>(An) 
n=l 

if An e IDl (n = 1, 2, 3, ... ), A, n A1 = 0 for i '# }, and A = Ui' An. 
If I is a characteristic function, then the countable additivity of </> is 

precisely the same as the countable additivity ofµ, since 

KE dµ = µ(A n E). 
A 

If I is simple, then I is of the form (51), and the conclusion again 
holds. 

In the general case, we have, for every measurable simple functions 
such that o s s sf, 

CX) CX) 

sdµ= L S dµ S L </>(An). 
A n=l An n= 1 

Therefore, by (53), 

CX) 

</>(A) S L </>(An)• 
n= 1 

Now if </>(An) = + oo for some n, (58) is trivial, since q,(A) ~ </>(An). 
Suppose </>(An) < + oo for every n. 

Given B > 0, we can choose a measurable function s such that 
0 s s sf, and such that 

Hence 

</>(A 1 u A2 ) ~ s dµ = s dµ + s dµ ~ </>(A1_) + </>(A 2 ) - 2e, 
Ai u A2 Ai A2 

so that 
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It follows that we have, for every n, 

(61) <J,(A1 U . • • U An) :2: <J,(A1) + • • • + q,(An). 

Since A => A1 u · · · u An, (61) implies 
CX) 

(62) q,(A) ~ L q,(An), 
n=l 

and (58) follows from (59) and (62). 

Corollary If A e 9.ll, Be 9.ll, B c A, and µ(A - B) = 0, then 
' 

/dµ = fdµ. 
A B 

Since A =Bu (A - B), this follows from Remark l 1.23(e). 

11.25 Remarks The preceding corollary shows that sets of i11easure zero are 
negligible in integration. 

Let us write/~ g on E if the set 

{xlf(x) # g(x)} n E 

has measure zero. 
Then/~/;/~ g implies g ~ /; and/~ g, g ~ h implies/~ h. That is, 

the relation ~ is an equivalence relation. 
If f ~ g on E, we clearly have 

/dµ = g dµ, 
,t ,t 

provided the integrals exist, for every measurable subset A of E. 
If a property P holds for every x e E - A, and if µ(A) = 0, it is customary 

to say that P holds for almost all x e E, or that P holds almost everywhere on 
E. (This concept of ''almost everywhere'' depends of course on the particular 
measure under consideration. In the literature, unless something is said to the 
contrary, it usually refers to Lebesgue measure.) 

' 

If/ e !l'(µ) on E, it is clear that/(x) must be finite almost everywhere on E. 
In most cases we the ref ore do not lose any generality if we assume the given 
functions to be finite-valued from the outset. 

11.26 Theorem If f e !l'(µ) on E, then If I e !l'(µ) on E, and 

(63) fdµ [fl dµ. 
E E 
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Proof Write E = A u B, where / (x) ~ 0 on A and f(x) < 0 on B. 
By Theorem 11.24, 

Ill dµ = Ill dµ + Ill dµ = 1+ dµ + 1- dµ < + oo, 
E A B A B 

so that If I e !l'(µ). Since/~ If I and -/ ~ If I, we see that 

Idµ~ Ill dµ, - Idµ s Ill dµ, 
E E E E 

and (63) follows. 

Since the integrability of/ implies that of If I, the Lebesgue integral is 
often called an absolutely convergent integral. It is of course possible to define 
nonabsolutely convergent integrals, and in the treatment of some problems it is 
essential to do so. But these integrals lack some of the most useful properties 
of the Lebesgue integral and play a somewhat less important role in analysis. 

11.27 Theorem Suppose f is nieasurable on E, Ill s g, and g e !l'(µ) on E. 
Then f e !l'(µ) on E. 

Proof We have/+ S g and/- ~ g. 

11.28 Lebesgue's monotone convergence theorem Suppose Ee IDl. Let {fn} be 
a sequence of measurable functions such that 

(64) 

(65) 

0 S/1(x) ~/2(x) s · · · 

Let f be defined by 

(x e E). 

fn(X)--+J(x) (x eE) 

.:is n --+ oo. Then 

(66) f,, dµ--+ Idµ (n --+ oo ). 
E E 

Proof By (64) it is clear that, as n--+ oo, 

(67) Indµ--+ o: 
E 

for some o:; and since Jf,, s J/, we have 

(68) o: S f dµ. 
E 



(69) 

(70) 

(71) 

(72) 
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Choose c such that O < c < 1, and let s be a simple measurable 
function such that O ~ s ~f Put 

En= {xlfn(x) ~ cs(x)} (n = 1, 2, 3, ... ). 

By (64), E 1 c E2 c £ 3 c · · · ; and by (65), 

For every n, • 

f,. dµ ~ f,. dµ ~ C s dµ. 
E En En 

We let n-+ oo in (70). Since the integral is a countably additive set function 
(Theorem 11.24), (69) shows that we may apply Theorem 11.3 to the last 
integral in (70), and we obtain 

(X ~ C s dµ. 
E 

Letting c -+ 1, we see that 

o: ~ s dµ, 
E 

and (53) implies 

o: ~ f dµ. 
E 

The theorem follows from (67), (68), and (72). 

11.29 Theorem Suppose f = / 1 + / 2 , where /; e !l'(µ) on E (i = 1, 2). Then 
/ e !l'(µ) on E, and 

(73) f dµ = Ji dµ + /2 dµ. 
E E E 

Proof First, suppose Ii ~ 0, / 2 ~ 0. If Ji and / 2 are simple, (73) follows 
trivially from (52) and (54). Otherwise, choose monotonically increasing 
sequences {s~}, {s:} of nonnegative measurable simple functions which 
converge to / 1,/2 • Theorem 11.20 shows that this is possible. Put 
Sn = s~ + s;. Then 

and (73) follows if we let n -+ oo and appeal to Theorem 11.28. 
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(74) 

(75) 

Next, suppose f 1 ~ 0, f 2 ~ 0. Put 

A = {x lf(x) ~ O}, B = {xlf(x) < O}. 

Then/,/i, and -f2 are nonnegative on A. Hence 

Similarly, -/,/i, and -f2 are nonnegative on B, so that 

(-f2) dµ = Ji dµ + (-f)dµ, 
B B B 

or 

Ii dµ = f dµ - f 2 dµ, 
B B B 

and (73) follows if we add (74) and (75). 
In the general case, E can be decomposed into four sets Ei on each 

ofwhich.fi(x) andf2(x) are of constant sign. The two cases we have proved 
so far imply 

(i = 1, 2, 3, 4), 

and (73) follows by adding these four equations. 

We are now in a position to reformulate Theorem 11.28 for series. 

11.30 Theorem Suppose E e IDl. If {fn} is a sequence of nonnegative measurable 
functions and 

(76) 

then 

CX) 

f (x) = L f,,(x) (x e E), 
n=l 

CX) 

fdµ = L fndµ. 
E n= 1 E 

Proof The partial sums of (76) form a monotonically increasing sequence . 

. 

11.31 Fatou's theorem Suppose Ee IDl. If {f,,} is a sequence of nonnegative 
measurable functions and 

f(x) = lim inffn(x) (x e E), 

then 

(77) f dµ :::;; lim inf In dµ. 
E n➔ oo E 



(78) 

(79) 

(80) 

(81) 
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Strict inequality may hold in (77). An example is given in Exercise 5. 

Proof For n = 1, 2, 3, ... and x e E, put 

Un(x) = inf f,(x) 

Then Un is measurable on E, and 

(i ~ n). 

0 :=:;; U1 (x) :=:;; U2(x) :=:;; • • ·, 

Un(x) :=:;;f,,(x), 

Un(x) -+ f(x) 

By (78), (80), and Theorem 11.28, 

(n-+ oo ). 

Un dµ-+ f dµ, 
E E 

so that (77) follows from (79) and (81 ). 

• 

11.32 Lebesgue's dominated convergence theorem Suppose Ee IDl. Let {fn} be 
a sequence of measurable functions such that 

(82) f,,(x) -+ f (x) (x eE) 

as n -+ oo. If there exists a function u e !l'(µ) on E, such that 

(83) 

then 

(84) 

IJ,,(x) I S u(x) (n = 1, 2, 3, ... , x e E), 

lim fn dµ = f dµ. 
n ➔ oo E E 

Because of (83), {fn} is said to be dominated by u, and we talk about 
dominated convergence. By Remark 11.25, the conclusion is the same if (82) 
holds almost everywhere on E. 

(85) 

Proof First, (83) and Theorem 11.27 imply that fn e !l'(µ) and f e !l'(µ) 
on E. 

Since f,, + u ~ 0, Fatou's theorem shows that 

(f + u) dµ S lim inf (f,, + u) dµ, 
E n➔ oo E 

or 

f dµ :=:;; lim inf fn dµ. 
E n➔ oo E 
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(86) 

Since g - fn ~ 0, we see similarly that 

(g - f) dµ ~ lim inf (g - f,,) dµ, 
E n➔ oo E 

so that 

- f dµ ~ lim inf - f,, dµ , 
E n➔ oo E 

which is the same as 

f dµ ~ lim sup f dµ. 
E n➔ oo E 

The existence of the limit in (84) and the equality asserted by (84) 
now follow from (85) and (86). 

Corollary If µ(E) < + oo, {/,,} is uniformly bounded on E, andf,,(x) ➔ f(x) on E, 
then (84) holds. 

A uniformly bounded convergent sequence is often said to be boundedly 
convergent. 

COMPARISON WITH THE RIEMANN INTEGRAL 

Our next theorem will show that every function which is Riemann-integrable 
on an interval is also Lebesgue-integrable, and that Riemann-integrable func
tions are subject to rather stringent continuity conditions. Quite apart from the 
fact that the Lebesgue theory therefore enables us to integrate a much larger 
class of functions, its greatest advantage lies perhaps in the ease with which 
many limit operations can be handled; from this point of view, Lebesgue's 
convergence theorems may well be regarded as the core of the Lebesgue theory. 

One of the difficulties which is encountered in the Riemann theory is 
that limits of Riemann-integrable functions (or even continuous functions) 
may fail to be Riemann-integrable. This difficulty is now almost eliminated, 
since limits of measurable functions are always measurable. 

Let the measure space X be the interval [a, b] of the real line, withµ= m 
(the Lebesgue measure), and ID? the family of Lebesgue-measurable subsets 
of [a, b ]. Instead of 

fdm 
X 

it is customary to use the familiar notation 
b 

fdx 
a 
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for the Lebesgue integral off over [a, b ]. To distinguish Riemann integrals 
from Lebesgue integrals, we shall now denote the former by 

b 

fdx. 
a 

11.33 Theorem 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 

(a) If f e rJ1t or, [a, b ], then f e !t' orz [a, b ], and 

b b 

f dx = rJ1t f dx. 
a a 

(b) Suppose/ is bounded on [a, b]. Then/ e rJ1t on [a, b] if and only if f is 
continuous almost everywhere on [a, b]. 

Proof Suppose f is bounded. By Definition 6.1 and Theorem 6.4 there 
is a sequence {Pk} of partitions of [a, b], such that Pk+l is a refinement 
of Pk, such that the distance between adjacent points of Pk is less than 
1/k, and such that 

-
lim U(Pk ,f) = rJ1t f dx. 
k➔ oo 

(In this proof, all integrals are taken over [a, b].) 
If Pk= {x0 , x1 , ••• , Xn}, with x0 = a, Xn = b, define 

put Uk(x) =Mi and L"(x) = mi for x,_ 1 < x ~ xi, 1 ~ i ~ n, using the 
notation introduced in Definition 6.1. Then 

L(Pk ,f) = Lk dx, U(Pk ,f) = Uk dx, 

and 

for all x e [a, b], since Pk+t refines Pk. By (90), there exist 

L(x) = lim Lk(x), U(x) = lim Uk(x). 
k ➔ oo k-+ oo 

Observe that L and U are bounded measurable functions on [a, b ], 
that 

L(x) ~f(x) ~ U(x) (a~ x ~ b), 
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(93) 

(94) 

(95) 

and that 

-
L dx = f1Jl f dx, U dx = fJlt f dx, 

-
by (88), (90), and the monotone convergence theorem. 

So far, nothing has been assumed about/ except that/is a bounded 
real function on [a, b ]. 

To complete the proof, note that./ e fJlt if and only if its upper and 
lower Riemann integrals are equal, hence if and only if 

Ldx = Udx; 

since L ~ U, (94) happens if and only if L(x) = U(x) for almost all 
x e [a, b] (Exercise 1 ). 

In that case, (92) implies that 

L(x) = f(x) = U(x) 

almost everywhere on [a, b ], so that f is measurable, and (87) follows 
from (93) and (95). 

Furthermore, if x belongs to no Pk, it is quite easy to see that U(x) = 
L(x) if and only if/is continuous at x. Since the union of the sets Pk is count
able, its measure is 0, and we conclude that/ is continuous almost every
where on [a, b] if and only if L(x) = U(x) almost everywhere, hence 
(as we saw above) if and only if f e fJlt. 

This completes the proof. 

The familiar connection between integration and differentiation is to a 
large degree carried over into the Lebesgue theory. If f e !t' on [a, b], and 

X 

(96) F(x) = f dt (a~ x ~ b), 
a 

then F'(x) =f(x) almost everywhere on [a, b]. 
Conversely, if Fis differentiable at every point of [a, b] (''almost every

where'' is not good enough here!) and if F' e !t' on [a, b ], then 

X 

F(x) - F(a) = F'(t) (a~ x 5. b). 
a 

For the proofs of these two theorems, we refer the reader to any of the 
works on integration cited in the Bibliography. 
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INTEGRATION OF COMPLEX FUNCTIONS 

Suppose f is a complex-valued function defined on a measure space X, and 
f = u + iv, where u and v are real. We say that f is measurable if and only if 
both u and v are measurable. 

It is easy to verify that sums and products of complex measurable functions 
are again measurable. Since 

Ill = (u2 + v2)112, 

Theorem 11.18 shows that lfl is measurable for every complex measurable f 
Suppose µ is a measure on X, E is a measurable subset of X, and/ is a 

complex function on X. We say that/ e !t'(µ) on E provided that/ is measurable 
and 

(97) Ill dµ < +oo, 
E 

and we define 

f dµ = u dµ + i V dµ 
E E E 

if (97) holds. Since I u I ~ If I, Iv I ~ If I, and If I ~ I u I + Iv I, it is clear that 
(97) holds if and only if u e !t'(µ) and v e .ft'(µ) on E. 

Theorems ll.23(a), (d), (e), (/), ll.24(b), 11.26, 11.27, 11.29, and 11.32 
can now be extended to Lebesgue integrals of complex functions. The proofs 
are qt1ite straightforward. That of Theorem 11.26 is the only one that offers 
anything of interest: 

If f e !t'(µ) on E, there is a complex number c, I cl = 1, such that 

c f dµ ~ 0. 
E 

Put g =cf= u + iv, u and v real. Then 

f dµ = C f dµ = g dµ = u dµ ~ If I dµ. 
E E E E E 

The third of the above equalities holds since the preceding ones show that 
Jg dµ is real. 

FUNCTIONS OF CLASS !£ 2 

As an application of the Lebesgue theory, we shall now extend the Parseval 
theorem (which we proved only for Riemann-integrable functions in Chap. 8) 
and prove the Riesz-Fischer theorem for orthonormal sets of functions. 
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11.34 Definition Let X be a measurable space. We say that a complex 
function f e !t'2(µ) on X if f is measurable and if 

If I 2 dµ < + 00. 
X 

If µ is Lebesgue measure, we say f e !t'2
• For f e !t'2(µ) (we shall omit the 

phrase ''on X'' from now on) we define 

1/2 

11/ II = I/I 2 dµ 
X 

and call 11/11 the !t'2(µ) norm off 

11.35 Theorem Suppose f e !t'2(µ) and g e !t'2(µ). Then Jg e !t'(µ), and 

(98) 1/u I dµ ~ 11/11 llull-
x 

This is the Schwarz inequality, which we have already encountered for 
series and for Riemann integrals. It follows from the inequality 

o =:; (Ill + llul)2 dµ = 11/11 2 + 2i 1/ul dµ + i 2 11u11 2
, 

X X 

which holds for every real l. 

11.36 Theorem If f e !t'2(µ) and g e !t'2(µ), then f + g e !t'2(µ), and 

II!+ ull =:; 11/11 + llull-
Proof The Schwarz inequality shows that 

llf+ull 2 = 1!1 2 + fu+ Ju+ lul 2 

~ II! 11 2 + 211/11 llull + llull 2 

= (11/11 + llull)2
• 

11.37 Remark If we define the distance between two functions f and g in 
!t'2(µ) to be II! - g II, we see that the conditions of Definition 2.15 are satisfied, 
except for the fact that II! - ull = 0 does not imply that f(x) = g(x) for all x, 
but only for almost all x. Thus, if we identify functions which differ only on a 
set of measure zero, !t'2(µ) is a metric space. 

We now consider !t'2 on an interval of the real line, with respect to 
Lebesgue measure. 

11.38 Theorem The continuous functions form a dense subset of !t'2 on [a, b ]. 
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• 

More explicitly, this means that for any f e 2 2 on [a, b], and any a> 0, 
there is a function o, continuous on [a, b ], such that 

b 1/2 

Ill - oil = If - ol 2 dx < a. 
a 

Proof We shall say that./ is approximated in 2 2 by a sequence {on} if 
11/'-onll ➔ Oas n • oo. 

Put 

and 

Let A be a closed subset of [a, b], and KA its characteristic function. 

t(x) = inf Ix - YI 

1 
On(x) = 1 + nt(x) 

(ye A) 

(n = 1, 2, 3, ... ).~·, 

Then Un is continuous on [a, b], On(x) = 1 on A, and Un(x) • 0 on B, 
where B = [a, b] - A. Hence 

1/2 

by Theorem 11.32. Thus characteristic functions of closed sets can be 
approximated in !t'2 by continuous functions. 

By (39) the same is true for the characteristic function of any 
measurable set, and hence also for simple measurable functions. 

If f ~ 0 and f e 2 2
, let {sn} be a monotonically increasing sequence 

of simple nonnegative measurable functions such that sn(x) • f (x). 
Since If - sn 1

2 
~/

2
, Theorem 11.32 shows that 11/' - sn I ➔ 0. 

The general case follows. 

11.39 Definition We say that a sequence of complex functions { <l>n} is an 
orthonormal set of functions on a measurable space X if 

(n-:/= m), 
(n = m). 

In particular, we must have <l>n e 2 2(µ). If f e 2 2(µ) and if 

(n=l,2,3, ... ), 

we write 

as in Definition 8.10. 
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The definition of a trigonometric Fourier series is extended in the same 
way to !t'2 (or even to !t') on [-n, n]. Theorems 8.11 and 8.12 (the Bessel 
inequality) hold for any/ e !t'2(µ). The proofs are the same, word for word. 

We can now prove the Parseval theorem. 

11.40 Theorem Suppose 

(99) 
- 00 

where f e !t'2 on [ - n, n]. Let sn be the nth partial sum of (99). Then 

(100) 

(101) 

lim II/ - snll = 0, 
n ➔ oo 

Proof Let e > 0 be given. By Theorem 11.38, there is a continuous 
function g such that 

e 
II/ - ull < - · 2 

Moreover, it is easy to see that we can arrange it so that g(n) = g( - n). 
Then g can be extended to a periodic continuous function. By Theorem 
8.16, there is a trigonometric polynomial T, of degree N, say, such that 

e 
I g - TII < 2 · 

Hence, by Theorem 8.11 (extended to !t'2), n ~ N implies 

llsn - /II ~ IIT- /II < e, 

and (100) follows. Equation (101) is deduced from (100) as in the proof of 
Theorem 8.16. 

Corollary Jf.f e 2 2 on [-n, n], and if 

f(x)e-inx dx = 0 (n = 0, ±1, ±2, ... ), 
-n 

then llfll = 0. 

Thus if two functions in 2 2 have the same Fourier series, they differ at 
most on a set of measure zero. 
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11.41 Definition Let f and fn e !t'2(µ) (n = 1, 2, 3, ... ). We say that {f,.} 
converges to fin !t'2(µ) if llf,. - fl ➔ 0. We say that {In} is a Cauchy sequence 
in !t'2(µ) if for every e > 0 there is an integer N such that n ~ N, m ~ N implies 
llf,. - fmll ~ e. 

11.42 Theorem If {f,.} is a Cauchy sequence in !t'2(µ), tlien there exiJ·ts a 
.function f e !t'2(µ) such that {f,.} converges to.fin !t'2(µ). 

(102) 

(103) 

(104) 

This says, in other words, that !t'2(µ) is a complete metric space. 

Proof Since {In} is a Cauchy sequence, we ~an find a sequence {nk}, 
k = 1, 2, 3, ... , such that 

(k = I, 2, 3, ... ). 

Choose a function g e .fi'2(µ). By the Schwarz inequality, 

Hence 

00 

I jg(/~k - lnk+l)I dµ ~ I ul. 
k= 1 X 

By Theorem 11.30, we may interchange the summation and integration in 
(102). It follows that 

00 

jg(x)I I llnk(x) - fnk+ 1(x)I < + 00 
k=l 

almost everywhere on X. Therefore 

00 

L lfnk+1(x) -.fnk(x)I < + oo 
k=l 

almost everywhere on X. For if the series in (104) were divergent on a 
set E of positive measure, we could take g(x) to be nonzero on a subset of 
E of positive measure, thus obtaining a contradiction to (103). 

Since the kth partial sum of the series 

which converges almost everywhere on X, is 

Ink+ 1Cx) - fn1(x), 
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(105) 

we see that the equation 

f(x) = lim f,,k(x) 
k ➔ oo 

defines f(x) for almost all x e X, and it does not matter how we define 
f (x) at the remaining points of X. 

We shall now show that this function f has the desired properties. 
Let e > 0 be given, and choose N as indicated in Definition 11.41. If 
nk > N, Fatou's theorem shows that 

II/ - /,,kll ~ lim inf ll/,, 1 - /,,kll ~ e. 
i ➔ oo 

Thus f - f,,k e fi' 2(µ), and since f = (f - f,,k) + f,,k, we see that f e !t'2(µ). 
Also, since e is arbitrary, 

lim II/ - /,,kll = 0. 
k ➔ oo 

Finally, the inequality 

shows that {f,,} converges to fin fi' 2(µ); for if we take n and nk large 
enough, each of the two terms on the right of (105) can be made arbi
trarily small. 

11.43 The Riesz-Fischer theorem Let {<Pn} be orthonormal on X. Suppose 
I. I cn I 2 converges, and put sn = c1 </> 1 + · · · + Cn<Pn. Then there exists a function 
/ e fi' 2(µ) such that {sn} converges to fin !t'2(µ), and such that 

Proof For n > m, 

llsn - smll 2 = lcm+1 l2 + · · · + lcnl 2
, 

so that {sn} is a Cauchy sequence in !t'2(µ). By Theorem 11.42, there is 
a function f e !t'2(µ) such that 

lim II/ - snll = 0. 
n ➔ oo 

Now, for n > k, 
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so that 

fipk dJl - Ck ~ If- snll · ll<Pkll + II/- snll• 
X 

Letting n ➔ oo, we see that 

( k = 1, 2, 3, ... ), 

and the proof is complete. 

11.44 Definition An orthonormal set { <Pn} is said to be complete if, for 
/ e !t'2(µ), the equations 

f<Pn dµ = 0 (n = 1, 2, 3, ... ) 
X 

imply that II! 11 = O. 
In the Corollary to Theorem 11.40 we deduced the completeness of the 

trigonometric system from the Parseval equation (101). Conversely, the Parseval 
equation holds for every complete orthonormal set: 

11.45 Theorem Let {<Pn} be a complete orthonormal set. If f e !t'2(µ) and if 

(106) 

then 

(107) 

(108) 

(109) 

00 

If 12 dµ = I I Cn 12 
• 

X n=l 

Proof By the Bessel inequality, 1: I cn I 2 converges. Putting 

Sn = Ci <Pt + ' ' ' + Cn<Pn, 

the Riesz-Fischer theorem shows that there is a function g e !t'2(µ) such 
that 

and such that Ilg - snll ➔ 0. Hence llsnll ➔ llull, Since 

llsnll 2 = lc1l 2 + ... + lcnl 2
, 

we have 
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Now (106), (108), and the completeness of {</>n} show that II/ - ull = 0, 
so that (109) implies (107). 

Combining Theorems 11.43 and 11.45, we arrive at the very interesting 
conclusion that every complete orthonormal set induces a 1-1 correspondence 
between the functions f e !i'2(µ) (identifying those which are equal almost 
everywhere) on the one hand and the sequences {en} for which l: I en 12 converges, 
on the other. The representation 

together with the Parseval equation, shows that !i'2(µ) may be regarded as an 
infinite-dimensional euclidean space (the so-called ''Hilbert space''), in which 
the point f has coordinates en, and the functions <Pn are the coordinate vectors. 

EXERCISES 

1. If/~ 0 and JE/dµ. = 0, prove that/(x) = 0 almost everywhere on E. Hint: Let En 

be the subset of Eon which/(x) > 1/n. Write A = UEn. Then µ.(A)= 0 if and only 
if µ.(En)= 0 for every n. 

2. If J,. / dµ. = 0 for every measurable subset A of a measurable set E, then/(x) = 0 
almost everywhere on E. 

3. If {f,.} is a sequence of measurable functions, prove that the set of points x at 
which {fn(x)} converges is measurable. 

4. If/ e ft'(µ.) on E and g is bounded and measurable on E, then fg e ft'(µ.) on E. 

5. Put 

Show that 

but 

[Compare with (77).] 

0 
g(x) = 1 

l21c(x) = g(x) 
/21c+1(X) = g(l - x) 

lim inf f,.(x) = 0 
n ➔ OO 

1 

(O::;;;x::;;;½), 
(½ < X::;;; 1), 
(0 ::;;; X ::;;; 1 ), 
(0 ::;;; X ::;;; 1). 

(O ::;;; x ::;;; 1 ), 

fn(X) dx = ½. 
0 



6. Let 

1 -f,.(x) = n 

0 

Then f,.(x) > 0 uniformly on Rt, but 

00 

(Ix I =::;;; n), 

(lxl >n). 
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f,. dx = 2 (n = 1, 2, 3, ... ). 
-oo 

(We write J~
00 

in place of JR1,) Thus uniform convergence does not imply domi
nated convergence in the sense of Theorem 11.32. However, on sets of finite 
measure, uniformly convergent sequences of bounded functions do satisfy Theo

rem 11.32. 
7. Find a necessary and sufficient condition that f E ~(o:) on [a, b]. Hint: Consider 

Example l 1.6(b) and Theorem 11.33. 
8. If /E ~ on [a, b] and if F(x) = f: f(t) dt, prove that F'(x) =f(x) almost every

where on [a, b ]. 
9. Prove that the function F given by (96) is continuous on [a, b]. 

10. If µ.(X) < +oo and/E !i'2(µ.) on X, provethat/E .P(µ.) on X. If 

this is false. For instance, if 

µ.(X) = + oo, 

1 
/(x)=l+lxl' 

then/E !i' 2 on Rt, but/¢ .Pon Rt. 
11. If f, g E .P(µ.) on X, define the distance between/ and g by 

X 
I/'- g dµ.. 

Prove that .P(µ.) is a complete metric space. 
12. Suppose 

(a) lf(x,y)I <1 ifO=::;;;x<l,O<y<l, 
(b) for fixed x,f(x, y) is a continuous function of y, 

(c) for fixed y,f(x, y) is a continuous function of x. 

Put 

t 
g(x) = f(x, y) dy 

0 
(0 < X < 1). 

Is g continuous? 

13. Consider the functions 

f,.(x) = sin nx (n = 1, 2, 3, ... , -1T =::;;; X =::;;; 1r) 
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as points of !i' 2
• Prove that the set of these points is closed and bounded, but 

not compact. 
14. Prove that a complex function f is measurable if and only if 1-1(V) is measurable 

for every open set Vin the plane. 
1S. Let fJl be the ring of all elementary subsets of (0, 1]. If O <a:::;; b:::;; 1, define 

<p([a, b]) = <p([a, b)) = <p ( (a, b]) = <p((a, b)) = b - a, 

but define 

<p((O, b)) = <p((O, b]) = 1 + b 

if O < b :::;; 1. Show that this gives an additive set function <p on fJl, which is not 
regular and which cannot be extended to a countably additive set function on a 

• a-ring. 
16. Suppose {n1c} is an increasing sequence of positive integers and Eis the set of all 

x E ( -1T, 1T) at which {sin n1cx} converges. Prove that m(E) = 0. Hint: For every 
A cE, 

and 

2 (sin n1cx) 2 dx = (1 - cos 2n1cx) dx > m(A) 
A. A. 

ask > oo. 

17. Suppose E c (-1T, 1T), m(E) > 0, S > 0. Use the Bessel inequality to prove that 
there are at most finitely many integers n such that sin nx ;;::::: S for all x E E. 

18. Suppose/E .IR 2(µ,),g E .!R2(µ,). Prove that 

if and only if there is a constant c such that g(x) = cf(x) almost everywhere. 
(Compare Theorem 11.35.) 
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LIST OF SPECIAL SYMBOLS 

The symbols listed below are followed by a brief statement of their meaning and by 
the number of the page on which they are defined. 

e belongs to . . . . . . . . . . . . . . . . . . . . 3 
¢ does not belong to . . . . . . . . . . . . . 3 
c, => inclusion signs . . . . . . . . . . . . 3 
Q rational field . . . . . . . . . . . . . . . . 3 
<, <, >, ~ inequality signs. . . . 3 
sup least upper bound. . . . . . . . . . . . 4 
inf greatest lower bound . . . . . . . . . 4 
R real field . . . . . . . . . . . . . . . . . . . . . 8 
+ oo, - oo, ooinfinities ........ 11, 27 
z complex conjugate ............. 14 
Re(z) realpart .................. 14 
Im (z) imaginary part ............ 14 
I z I absolute value ............... 14 
L summation sign ............ 15, 59 
R" euclidean k-space ............. 16 
0 null vector .................... 16 
x · y inner product .............. 16 
I x I norm of vector x ............ 16 

{xn} sequence .................... 26 
U, u union .................... 27 
n, (") intersection ............... 27 
(a, b) segment ................... 31 
[a, b] interval ................... 31 
Ee complement of E ............. 32 
£' limit points of E .............. 35 
E closure of E .................. 35 
lim limit . ....................... 47 
-► converges to .............. 47, 98 
lim sup upper limit .............. 56 
lim inf lower limit ............... 56 
g O f composition ................ 86 
f(x+) right-hand limit ........... 94 
J(x-) left-hand limit ............ 94 
/',f'(x) derivatives ........ 103,112 
U(P, /), U(P, J, oc), L(P, /), L(P, J, oc) 

Riemann sums ........... 121, 122 
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~, ~(or.) classes of Riemann (Stieltjes) 
integrable functions ....... 121, 122 

<G(X) space of continuous 
functions ..................... 1 SO 

II II norm ........... 140, 150, 326 
exp exponential function ........ 179 
DN Dirichlet kernel ............. 189 
I'(x) gamma function ........... 192 
{ e1, ... , en} standard basis ....... 205 
L(X), L(X, Y) spaces of linear 

transformations ................ 207 
[A] matrix ..................... 210 
D 1/ partial derivative ........... 215 
'v f gradient .................... 217 
<G', <G'' classes of differentiable 

functions ................ 219, 23 5 
det [A] determinant ............. 232 
J,(x) Jacobian ................. 234 

o(yi, ... 'Yn) J b' 234 ~( ) aco 1an ......... . 
u X 1, ••• , Xn 

Jk k-cell ....................... 245 
Q" k-sim plex .................. 24 7 
dx, basic k-f orm ............... 257 
A multiplication symbol ........ 254 
d differentiation operator ........ 260 
wr transform of w ............. 262 
o boundary operator ............ 269 
'v x F curl . . . . . . . . . . . . . . . . . . . . 281 
'v · F divergence . . . . . . . . . . . . . . . 281 
<ff ring of elementary sets ........ 303 
m Lebesgue measure ....... 303, 308 
µ. measure ................ 303, 308 
IDlF, IDl families of measurable sets 305 
{x IP} set with property P ........ 310 
f + ,/- positive (negative) part 

off ......................... 312 
KE characteristic function ....... 313 
ft', fl'(µ.), !R 2

, !i'2(µ.) classes of 
Lebesgue-integrable 
functions ................ 315, 326 



Abel, N. H., 75, 174 
Absolute convergence, 71 

of integral, 138 
Absolute value, 14 
Addition (see Sum) 
Addition formula, 178 
Additivity, 30 I 
Affine chain, 268 
Affine mapping, 266 
Affine simplex, 266 
Algebra, 161 

self-adjoint, 165 
uniformly closed, 161 

Algebraic numbers, 43 
Almost everywhere, 317 
Alternating series, 71 
Analytic function, 172 
Anticommutative law, 256 
Arc, 136 
Area element, 283 
Arithmetic means, 80, 199 
Artin, E., 192, 195 
Associative law, 5, 28, 259 
Axioms, 5 

Baire's theorem, 46, 82 
Ball, 31 
Base, 45 
Basic form, 257 
Basis, 205 
Bellman, R., 198 
Bessel inequality, 188, 328 
Beta function, 193 
Binomial series, 20 I 
Bohr-Mollerup theorem, 193 
Bore)-mf;asurable function, 3 13 

Borel set, 309 
Boundary, 269 
Bounded convergence, 322 
Bounded function, 89 
Bounded sequence, 48 
Bounded set, 32 
Brouwer's theorem, 203 
Buck, R.C., 195 

Cantor, G., 21, 30, 186 
Cantor set, 41, 81, 138, 168, 309 
Cardinal number, 25 
Cauchy criterion, 54, 59, 147 
Cauchy sequence, 21, 5 2, 8 2, 3 29 
Cauchy's condensation test, 61 
Cell, 31 
'€"-equivalence, 280 
Chain, 268 

affine, 268 
differentiable, 270 

Chain rule, 105, 214 
Change of variables, 132, 252, 262 
Characteristic function, 313 
Circle of convergence, 69 
Closed curve, 136 
Closed form, 275 
Closed set, 32 
Closure, 35 

uniform, 151, 161 
Collection, 27 
Column matrix, 217 
Column vector, 210 
Common refinement, 123 
Commutative law, 5. 28 
Compact metric space, 36 
Compact set, 36 
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Comparison test, 60 
Complement, 32 
Complete metric space, 54, 82, 

151, 329 
Complete orthonormal set, 331 
Completion, 82 
Complex field, 12, 184 
Complex number, 12 
Complex plane, 17 
Component of a function, 87, 215 
Composition, 86, 105, 127, 207 
Condensation point, 45 
Conjugate, 14 
Connected set, 42 
Constant function, 85 
Continuity, 85 

uniform, 90 
Continuous functions, space of, 

150 
Continuous mapping, 85 
Continuously differentiable curve, 

136 
Continuously differentiable map

ping, 219 
Contraction, 220 
Convergence, 47 

absolute, 71 
bounded, 322 
dominated, 3 21 
of integral, 138 
pointwise, 144 
radius of, 69, 79 
of sequences, 47 
of series, 59 
uniform. 147 

Convex function, 101 
Convex set. 3 I 
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Coordinate function, 88 
Coordinates, 16, 20.5 
Countable additivity, 30 I 
Countable base, 4.5 
Countable set, 2.5 
Cover, 36 
Cunningham, F., 167 
Curl, 281 
Curve, 136 

closed, 136 
continuously differentiable, 136 
rectifiable, 136 
space-filling, 168 

Cut, 17 

Davis, P.J., 192 
Decimals, 11 
Dedekind, R., 21 
Dense subset, 9, 32 
Dependent set, 20.5 
Derivative, I 04 

directional, 218 
of a form, 260 
of higher order, 110 
of an integral, 133, 236, 324 
integration of, 134, 324 
partial, 21.5 
of power series, 17 3 
total, 213 
of a transformation, 214 
of a vector-valued function, 112 

Determinant, 232 
of an operator, 234 
product of, 233 

Diagonal process, 30, 1.57 
Diameter, .52 
Differentiable function, I 04, 212 
Differential, 2 I 3 
Differential equation, 119, 170 
Differential form (see Form) 
Differentiation (see Derivative) 
Dimension, 20.5 
Directional derivative, 218 
Dirichlet's kernel, 189 
Discontinuities, 94 
Disjoint sets, 27 
Distance, 30 
Distributive law, 6, 20, 28 
Divergence, 281 
Divergence theorem, 2.53, 272, 

288 
Divergent sequence, 47 
Divergent series, .59 
Domain, 24 
Dominated convergence theorem, 

1.5.5, 167, 321 
Double sequence, 144 

e, 63 
Eberlein, W. F., 184 
Elementary set, 303 
Empty set, 3 
Equicontinuity, I .56 

Equivalence relation, 2.5 
Euclidean space, 16, 30 
Euler's constant, 197 
Exact form, 27 .5 
Existence theorem, 170 
Exponential function, 178 
Extended real number system, 11 
Extension, 99 

Family, 27 
Fatou's theorem, 320 
Fejer's kernel, 199 
Fejer's theorem, 199 
Field axioms, .5 
Fine, N. J., 100 
Finite set, 2.5 
Fixed point, 117 

theorems, 117, 203, 220 
Fleming, W. H., 280 
Flip, 249 
Form, 2.54 

basic, 2.57 
of class 'C' !C", 2.54 
closed, 27.5 
derivative of, 260 
exact, 27.5 
product of, 2.58, 260 
sum of, 2.56 

Fourier, J. B., 186 
Fourier coefficients, 186, 187 
Fourier series, 186, 187, 328 
Function, 24 

absolute value, 88 
analytic, 172 
Borel-measurable, 313 
bounded, 89 
characteristic, 313 
component of, 87 
constant, 8.5 
continuous, 8.5 

from left, 97 
from right, 97 

continuously differentiable, 219 
convex, 10 I 
decreasing, 9.5 
differentiable, I 04, 212 
exponential, 178 
harmonic, 297 
increasing, 9 .5 
inverse, 90 
Lebesgue-integrable, 31.5 
limit, 144 
linear, 206 
logarithmic, 180 
measurable, 3 I 0 
monotonic, 9.5 
nowhere differentiable continu-

ous, 1.54 
one-to-one, 2.5 
orthogonal, 187 
periodic, 183 
product of. 8.5 
rational, 88 
Riemann-integrable, 121 

Function: 
simple, 313 
sum of, 8.5 
summable, 31.5 
trigonometric, 182 
uniformly continuous, 90 
uniformly differentiable, 11.5 
vector-valued, 8.5 

Fundamental theorem of calculus, 
134, 324 

Gamma function, 192 
Geometric series, 61 
Gradient, 217, 281 
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Greatest lower bound, 4 
Green's identities, 297 
Green's theorem, 2.53, 2.5.5, 272, 
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Harmonic function, 297 
Havin, V.P., 113 
Heine-Borel theorem, 39 
Helly's selection theorem, 167 
Herstein, I. N ., 6.5 
Hewitt, E., 21 
Higher-order derivative, 110 
Hilbert space, 332 
Holder's inequality, 139 

i, 13 
Identity operator, 232 
Image, 24 
Imaginary part, 14 
Implicit function theorem, 224 
Improper integral, 139 
Increasing index, 2.57 
Increasing sequence, .5.5 
Independent set, 20.5 
Index of a curve, 20 I 
Infimum, 4 
Infinite series, .59 
Infinite set, 2.5 
Infinity, 11 
Initial-value problem, 119, 170 
Inner product, 16 
Integrable functions, spaces of, 

31.5,326 
Integral: 

countable additivity of, 316 
differentiation of, 133, 236, 324 
Lebesgue, 3 14 
lower, 121, 122 
Riemann, 121 
Stieltjes, 122 
upper, 121, 122 

Integral test, 139 
Integration: 

of derivative, 134, 324 
by parts, 134, 139, 141 

Interior. 43 
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Intermediate value, 93, 100, 108 
Intersection, 27 
Interval, 31, 302 
Into, 24 
Inverse function, 90 
Inverse function theorem, 221 
Inverse image, 24 
Inverse of linear operator, 207 
Inverse mapping, 90 
Invertible transformation, 207 
Irrational number, 1, 10, 65 
Isolated point, 32 
Isometry, 82, 170 
Isomorphism, 21 

Jacobian, 234 

Kellogg, 0. D., 281 
Kestelman, H., 167 
Knopp, K .. 21, 63 

Landau, E.G. H., 21 
Laplacian, 297 
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Lebesgue, H.\L., 186 
Lebesgue-integrable function, 315 
Lebesgue integral, 314 
Lebesgue measure, 308 
Lebesgue's theorem, 155, 167, 

318,321 
Left-hand limit, 94 
Leibnitz, G. W., 71 
Length, 136 
L'Hospital's rule, 109, 113 
Limit, 47, 83, 144 

left-hand, 94 
lower, 56 
pointwise, 144 
right-hand, 94 
subsequential, 51 
upper, 56 

Limit function, 144 
Limit point, 32 
Line, 17 
Line integral, 255 
Linear combination, 204 
Linear function, 206 
Linear mapping, 206 
Linear operator, 207 
Linear transformation, 206 
Local maximum, 107 
Localization theorem, 190 
Locally one-to-one mapping, 223 
Logarithm, 22, 180 
Logarithmic function, 180 
Lower bound, 3 
Lower integral, 121, 122 
Lower limit, 56 

McShanc. E. J ., 3 I 3 

Mapping, 24 
affine, 266 
continuous, 85 
continuously differentiable, 219 
linear, 206 
open, 100, 223 
primitive, 248 
uniformly continuous, 90 
(See also Function) 

Matrix, 210 
product, 211 

Maximum, 90 
Mean square approximation, 187 
Mean value theorem, 108, 235 
Measurable function, 310 
Measurable set, 305, 310 
Measurable space, 310 
Measure, 308 

outer, 304 
Measure space, 310 
Measure zero, set of, 309, 317 
Mertens, F., 74 
Metric space, 30 
Minimum, 90 
Mobius band. 298 
Monotone convergence theorem, 

318 
Monotonic function, 95, 302 
Monotonic sequence. 55 
Multiplication (see Product) 

Negative number, 7 
Negative orientation, 267 
Neighborhood, 32 
Newton's method, 118 
Nijenhuis, A., 223 
Niven, I .. 65, 198 
Nonnegative number, 60 
Norm, 16, 140, 150, 326 

of operator, 208 
Nor111al derivative, 297 
Normal space, 101 
Normal vector, 284 
Nowhere differentiable function, 

154 
Null space, 228 
Nutt vector, 16 
Number: 

algebraic, 43 
cardinal, 25 
complex, 12 
decimal, 11 
finite, 12 
irrational, 1, 10, 65 
negative, 7 
nonnegative, 60 
positive, 7, 8 
rational, I 
real, 8 

One-to-one correspondence. 25 
Onto, 24 
Open cover, 36 
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Open mapping, 100, 223 
Open set, 32 
Order, 3, 17 

lexicographic, 22 
Ordered field, 7, 20 

k-tuple, 16 
pair, 12 
set, 3, I 8, 22 

Oriented simplex, 266 
Origin, 16 
Orthogonal set of functions, 187 
Orthonormal set, 187, 327, 331 
Outer measure, 304 

Parameter domain, 254 
Parameter interval, 136 
Parseval's theorem, 191, 198, 328, 

331 
Partial derivative, 215 
Partial sum, 59, 186 
Partition, 120 

of unity, 251 
Perfect set, 32 
Periodic function, 183, 190 
7T, 183 
Plane, 17 
Poincare's lemma, 27 5, 280 
Pointwise bounded sequence, 155 
Pointwise convergence, 144 
Polynomial, 88 

trigonometric, 185 
Positive orientation, 267 
Power series, 69,172 
Primes, 197 
Primitive mapping, 248 
Product, 5 

Cauchy, 73 
of complex numbers, 12 
of determinants, 233 
of field elements, 5 
of forms, 258, 260 
of functions, 85 
inner, 16 
of matrices, 211 
of real numbers, 19, 20 
scalar, 16 
of series, 7 3 
of transformations, 207 

Projection, 228 
Proper subset, 3 

Radius, 31, 32 
of convergence, 69, 79 

Range, 24, 207 
Rank, 228 
Rank theorem, 229 
Ratio test, 66 
Rational function, 88 
Rational number, I 
Real field, 8 
Real line, 17 
Real number, 8 
Reitl part. 14 
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Rectifiable curve, 136 
Refinement, 123 
Reflexive property, 25 
Regular set function, 303 
Relatively open set, 35 
Remainder, 211, 244 
Restriction, 99 
Riemann, B., 76, 186 
Riemann integral, 121 
Riemann-Stieltjes integral, 122 
Riesz-Fischer theorem, 330 
Right-hand limit, 94 
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Root, IO 
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Row matrix, 217 

Saddle point, 240 
Scalar product, 16 
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Schwarz inequality, 15, 139, 326 
Segment, 31 
Self-adjoint algebra, 165 
Separable space, 45 
Separated sets, 42 
Separation of points, 162 
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bounded, 48 
Cauchy, 52, 82,329 
convergent, 47 
divergent, 47 
double, 144 
of functions, 143 
increasing, 55 
monotonic, 55 
pointwise bounded, 155 
pointwise convergent, 144 
uniformly bounded, 15 5 
uniformly convergent, 157 

Series, 59 
absolutely convergent, 71 
alternating, 71 
convergent, 59 
divergent, 59 
geometric, 61 
nonabsolutely convergent, 72 
power, 69, I 72 
product of, 73 
trigonometric, 186 
uniformly convergent, 157 

Set, 3 
at most countable, 25 
Borel, 309 
bounded, 32 
bounded above, 3 
Cantor, 41, 81, 138, 168, 309 
closed, 32 
compact, 36 
complete orthonormal, 331 
connected, 42 
convex, 31 
countable, 25 

Set, 
dense, 9, 32 
elementary, 303 
empty, 3 
finite, 25 
independent, 205 
infinite, 25 
measurable, 305, 310 
nonempty, 3 
open, 32 
ordered, 3 
perfect, 3 2, 41 
relatively open, 35 
uncountable, 25, 30, 41 

Set function, 30 I 
u-ring, 30 I 
Simple discontinuity, 94 
Simple function, 313 
Simplex, 247 

affine, 266 
differentiable, 269 
oriented, 266 

Singer, I. M., 280 
Solid angle, 294 
Space: 

compact metric, 36 
complete metric, 54 
connected, 42 
of continuous functions, 150 
euclidean, 16 
Hilbert, 332 
of integrable functions, 315, 326 
measurable. 310 
measure, 310 
metric, 30 
normal, IOI 
separable, 45 

Span, 204 
Sphere, 272, 277, 294 
Spivak, M., 272, 280 
Square root, 2, 81, 118 
Standard basis, 205 
Standard presentation, 257 
Standard simplex, 266 
Stark, E. L .. 199 
Step function, 129 
Stieltjes integral, 122 
Stirling's formula, 194, 200 
Stokes' theorem, 253, 272, 287 
Stone-Weierstrass theorem, 162, 
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Stromberg, K., 21 
Subadditivity, 304 
Subcover, 36 
Subfield, 8, 13 
Subsequence, 51 
Subsequential limit, 51 
Subset, 3 

dense, 9, 32 
proper, 3 

Sum, 5 
of complex numbers, 12 
of field elements, 5 
of forms, 256 
ot· functions, 85 

Sum, 
of linear transformations, 207 
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of real numbers, 18 
of series, 59 
of vectors, 16 

Summation by parts, 70 
Support, 246 
Supremum, 4 
Supremum norm, 150 
Surface, 254 
Symmetric difference, 305 

Tangent plane, 284 
Tangent vector, 286 
Tangential component, 286 
Taylor polynomial, 244 
Taylor's theorem, I I 0, 116, 176, 24. 
Thorpe, J. A., 280 
Thurston, H. A., 21 
Torus, 239-240, 285 
Total derivative, 213 
Transforqiation (see Function; 

Mapping) 
Transitivity, 25 
Triangle inequality, 14, 16, 30, 140 
Trigonometric functions, 182 
Trigonometric polynomial, 185 
Trigonometric series, 186 

Uncountable set, 25, 30, 41 
Uniform boundedness, 155 
Uniform closure, 151 
Uniform continuity, 90 
Uniform convergence, 147 
Uniformly closed algebra, 161 
Uniformly continuous mapping, 90 
Union, 27 
Uniqueness theorem, 119, 258 
Unit cube, 247 
Unit vector, 2 I 7 
Upper bound, 3 
Upper integral, 121, I 22 
Upper limit, 56 

Value, 24 
Variable of integration, 122 
Vector, 16 
Vector field, 281 
Vector space, 16, 204 
Vector-valued function, 85 

derivative of, 112 
Volume, 255, 282 

Weierstrass test, 148 
Weierstrass theorem, 40, 159 
Winding number, 20 I 

Zero set, 98, 117 
Zeta function. 14 l 




