Seat No.: GHO

MP-128

March-2019

B.Sc., Sem.-VI

310: Mathematics

Time: 2:30 Hours

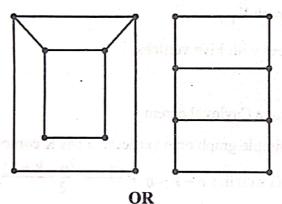
[Max. Marks: 70

1. (A) (1) Define the following term with graph:

7

7

- (i) Adjacent vertices
- (ii) Null graph
- (iii) Edge deleted sub graph
- (iv) k-regular graph
- (2) Define isomorphism of a graph. Discuss whether the following graphs are isomorphic or not?



(1) For any graph G with e edges and n vertices $v_1, v_2, v_3, \dots v_n$ Prove that

$$\sum_{i=1}^{n} d(v_i) = 2e.$$

7

- (2) Define k-cube Q_K and prove that Q_K has 2^K vertices and 2^{k-1} edges.
- 7

(B) Answer in short: (Any TWO)

- 4
- (i) What is the smallest positive integer n such that complete graph Kn has at least 600 edges.
- (ii) Draw 3 regular graph with 5 vertices.
- (iii) Define neighbourhood set with example.

MP-128

1

P.T.O.

- 2. (A) (1) Let G be acyclic graph with n vertices and k connected components, then prove that G has a n-k edges.
- 7

7

7

- Without drawing actual graph, determine whether the graph is connected or **(2)**
 - not, whose adjacency matrix is $A(G) = \begin{bmatrix} 3 & 2 & 3 & 3 \\ 1 & 0 & 2 & 2 \\ 0 & 2 & 1 & 2 \\ 0 & 2 & 2 & 3 \end{bmatrix}$.

OR

- If T is a tree with n vertices then prove that it has precisely n-1 edges. (1)
- Let u and v be distinct vertices of a tree T. Then there is precisely one (2)path from u to v.
 - Let G be graph without any loops. If for every pair of distinct vertices (ii) u and v of G there is precisely one path from u to v, then G is a tree.
- (B) Answer in short : (Any TWO)

- Define forest with graph. (i)
- (ii) Draw star graph K_{1.6}
- Give two trees with Five vertices. (iii)
- State and prove Cayley theorem. (A) (1) 3.

7

Let G be a simple graph on n vertices. G has K components then the number **(2)** of edges of G satisfies $n-k \le m \le \frac{(n-k)(n-k+1)}{2}$.

OR

- Let G be a graph with n vertices, where $n \ge 2$. Then G has at least two (1) vertices which are not cut vertex.
- Prove that any simple graph with n vertices and more than $\frac{(n-1)(n-2)}{2}$. (2)
- Answer in short: (Any TWO)

7

- Draw Petersen graph. (i)
- Define Cut Vertex with example. (ii)
- Let G be a connected graph with 14 edges then what is the maximum possible number of vertices in G?

MP-128

4.	(A)	(1)	A connected graph G is Euler if and only if the degree of every vertex is	
			even.	7
		(2)	Prove that the vertex connectivity k(G) of graph G is always less than or	
			equal to the Edge connectivity $\lambda(G)$.	6
			OR	
		(1)	If G is a simple graph with $n \ge 3$ vertices and if deg $V + deg W \ge n$ for each	
			pair of non-adjacent vertices V and W then G is Hamiltonian.	7
		(2)	Discuss The Konigsberg bridges problem.	6
	(B)	Ansv	ver in short : (Any TWO)	4
		(i)	How many different Hamiltonian cycle for complete graph k ₅ .	
		(ii)	Define Hamiltonian path and Hamiltonian cycle.	
		(iii)	Define Closure of graph G	