Seat No.: 4408

NL-111

November-2017

B.Sc., Sem.-V

CC-302: Mathematics

(Analysis – I)

Time: 3 Hours

[Max. Marks: 70

All the questions are compulsory and carry 14 marks. **Instructions:** (1)

- (2)Notations are usual.
- Prove that the set of all rational numbers is countable.

OR

Prove that countable union of countable sets is again countable.

State and prove rational density theorem. (b)

7

7

OR

Prove that $\sqrt{11}$ is not rational.

2. (a) If
$$S_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$
 then prove that $2 < \lim_{n \to \infty} S_n < 3$.

7

If $\{x_n\}$ is a Cauchy sequence of real numbers then prove that $\{x_n\}$ is convergent.

(b) If
$$S_1 = \sqrt{2}$$
 and $S_{n+1} = \sqrt{2S_n}$ for every n, then show that (S_n) is monotonic increasing bounded above and $\lim_{n \to \infty} S_n = 2$.

OR

Prove that a bounded and monotonically increasing sequence converges.

3. (a) If
$$\lim_{x \to a} f(x) = L$$
 and $\lim_{x \to a} g(x) = M \neq 0$, then prove that $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$.

7

OR

(i) If
$$\lim_{x \to a} g(x) = M \neq 0$$
 then $\lim_{x \to a} \frac{1}{g(x)} = \frac{1}{M}$
(ii) $\lim_{x \to 0} \frac{1}{x^2} = +\infty$

NL-111

(b) State and prove intermediate value theorem.

OR

If fan f is continuous at "a" and fan g is continuous at f(a) then gof is continuous at "a".

4. (a) State and prove Mean Value Theorem.

7

7

OR

State and prove the Roll's theorem and verify it for $f(x) = x^3 - 3x + 2$ in [-1, 2]

(b) Evaluate

7

(i)
$$\lim_{x \to 0} \frac{e^x - 2 - x - \frac{x^2}{3}}{\sin^3 x}$$

(ii) $\lim_{x \to 0} \left(\frac{4}{x \tan x} - \frac{1}{x \sin x} \right)$

OR

Suppose that fa^n f is continuous and one-to-one on [a, b] and is differentiable with $f'(x_0) \neq 0$, then prove that f^{-1} is also differentiable at $y_0 = f'(x_0)$ and $(f^{-1})'(y^0) = \frac{1}{(f' f^{-1}(y_0))}$.

5. Answer the following in short: (any seven)

14

- (1) In usual notations prove that $[0, 1] \sim (0, 1)$.
- (2) If f(0) = f'(0) = 1, then evaluate $\lim_{x \to 0} \frac{f(x) 1}{x}$.
- (3) Show that R is uncountable.
- (4) Define injective and subjective functions with example.
- (5) State Cauchy's mean value theorem.

(6) Find
$$\lim_{x \to -\infty} \frac{|x-2|}{x}$$
 and $\lim_{x \to +\infty} \frac{|x-2|}{x}$.

- (7) Give an example of a sequence which is bounded but not convergent.
- (8) State only L" Hospital's Rule.
- (9) Prove that every convergent sequence is Cauchy seq. too. .