i er film gill, mæ
CS
the late of an experience
[Max. Marks: 70
of the question/sub question. $a(t) = \overline{0}_{V} \text{ has a nontrivial solution}$
$v_0 = v_0$ has an infinite number of
ad:
$e_1 = e_1 + e_2, T(e_2) = e_2 + e_3,$
$(x_1, x_2, x_3) = (4, 6, 8).$ 7
(1, 2), (2, 3, 1)} for the vector
of the Carlotte and prove the Carlotte
has an orthogonal basis. 7

Seat No.: 2041

MTD-114

November-2016

B.Sc., Sem.-V

CC-301: Mathematics

(Linear Algebra-II)

Time: 3 Hours

Instructions: (1) All the questions are compulsory.

- (2) All the questions carry 14 marks.
- (3) Right hand side figures indicate marks of the question/sub question.
- (4) Notations are usual.
- 1. (a) If $T: U \to V$ is linear map, $v_0 \in R(T)$ and if $T(u) = \overline{0}_V$ has a nontrivial solution $u \neq \overline{0}_U$ then prove that the operator equation $T(u) = v_0$ has an infinite number of solutions.

OR

State and prove the dual basis existence theorem.

(b) If a linear map $T: V_3 \rightarrow V_3$ is defined as $T(e_1) = e_1 + e_2$, $T(e_2) = e_2 + e_3$, $T(e_3) = e_3 + e_1$, then solve the operator equation $T(x_1, x_2, x_3) = (4, 6, 8)$.

OR

Find the dual basis of the basis $B = \{(1, 2, 3), (3, 1, 2), (2, 3, 1)\}$ for the vector space V_3 .

15%. (a) Prove that a finite dimensional inner product space has an orthogonal basis.

Define an orthogonal linear map.

If (V, <, >) is an inner product space then prove that a linear map $T : V \to V$ is an orthogonal linear map if and only if ||T(x)|| = ||x|| for all $x \in V$.

MB-114

(b) If for $x = (x_1, x_2)$, $y = (y_1, y_2) \in \mathbb{R}^2$ the map <, > is defined as <x, $y> = y_1 [x_1 - x_2] + y_2 [2x_2 - x_1]$ then show that < \neq > is an inner product on \mathbb{R}^2 . 7

OR

Apply the Gram-Schmidt orthogonalization process to the basis $B = \{(0, -1, 1), (1, 0, -1), (1, 1, 0)\}$ in order to get orthonormal basis for V_3 .

3. (a) If $i \neq j$, $\alpha \in R$ and if det: $V^n \to R$ is a function satisfying the expected properties of the determinant then prove the followings:

(i) $\det(v_1, v_2, ..., v_i, ..., v_i, ..., v_n) = \det(v_1, v_2, ..., v_i + \alpha v_i, ..., v_i, ..., v_n)$

(ii) $\det(v_1, v_2, ..., v_i, ..., v_i, ..., v_n) = -\det(v_1, v_2, ..., v_i, ..., v_i, ..., v_n)$

OR

State and prove the Cramer's rule for solving a system of linear equations.

(b) If $A = \begin{pmatrix} 1 & 0 & 3 & 4 \\ 0 & -1 & 4 & 5 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 1 & -1 \end{pmatrix}$ then find det A by applying the Laplace Expansion about

the last row of the matrix A.

OR

If $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 0 & -1 \\ 2 & 0 & 4 & 2 \\ 7 & 3 & 1 & -1 \end{pmatrix}$ then compute det A without expansion.

4. (a) Express the characteristic equation of 2 × 2 matrix A in terms of Trace of A and det A. Also prove that a 2 × 2 real and symmetric matrix has only real eigen values.

R

State and prove the Cayley-Hamilton's theorem.

(b) Diagonalize the matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, also find the modal matrix which diagonalizes A.

OR

Identify the quadric in R³ given by

$$f(x, y, z) = 4xz + 4y^2 + 8y + 8 = 0$$

MB-114 2

2480

7

7

5. Answer any seven of the following questions in short:

14

- (a) Define addition and composition of linear maps.
- (b) Define a linear functional and give one example of it.
- (c) Define an endomorphism and an isomorphism.
- (d) Define and illustrate an inner product space.
- (e) Define orthogonal set and give one example of it.
- (f) State the Laplace Expansion.

(g) Find det A if A =
$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 5 & 4 & 3 \end{bmatrix}$$

- (h) Define eigen value and eigen vector of an endomorphism.
- (i) Define a bilinear map and a quadric.